首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6727篇
  免费   1235篇
  国内免费   1524篇
测绘学   838篇
大气科学   858篇
地球物理   2072篇
地质学   3182篇
海洋学   858篇
天文学   482篇
综合类   443篇
自然地理   753篇
  2024年   26篇
  2023年   122篇
  2022年   339篇
  2021年   432篇
  2020年   352篇
  2019年   418篇
  2018年   407篇
  2017年   380篇
  2016年   423篇
  2015年   433篇
  2014年   449篇
  2013年   551篇
  2012年   495篇
  2011年   457篇
  2010年   439篇
  2009年   467篇
  2008年   449篇
  2007年   372篇
  2006年   330篇
  2005年   211篇
  2004年   174篇
  2003年   140篇
  2002年   147篇
  2001年   124篇
  2000年   111篇
  1999年   94篇
  1998年   80篇
  1997年   67篇
  1996年   76篇
  1995年   51篇
  1994年   48篇
  1993年   41篇
  1992年   49篇
  1991年   27篇
  1990年   27篇
  1989年   28篇
  1988年   33篇
  1987年   26篇
  1986年   31篇
  1984年   31篇
  1983年   33篇
  1982年   36篇
  1981年   23篇
  1979年   41篇
  1978年   26篇
  1977年   24篇
  1974年   23篇
  1973年   23篇
  1972年   25篇
  1971年   24篇
排序方式: 共有9486条查询结果,搜索用时 15 毫秒
171.
通过样方法及植被调查法,从纵向和横向两个不同方向对工程破坏后的沙地植被进行比较研究。在纵向上,由于植被恢复时间的不同,其恢复的程度也不同。植被恢复状况可明显的分3个阶段:定居前期(1~6a)主要以多年生羽叶三芒草和小半灌木绢蒿为主;中期(7~11a)主要以多年生小半灌木青杆沙蒿为主;后期(12~16a)主要生长着多年生麻黄及草本沙苔,地表出现大面积的生物结皮。在横向上,将恢复后期的植被与原始植被进行比较。通过对植被发育不同阶段过程中物种重要值、物种多样性、丰富度及生活型的变化等方面的调查,发现在不同阶段,各物种的重要值发生了不同的变化,物种多样性指数,均匀度指数,丰富度指数到后期均增大。  相似文献   
172.
Rb2Ca[B4O5(OH)4]2·8H2O溶解及相转化过程的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用IR光谱和Raman光谱等实验手段,对25℃时Rb2Ca[B4O5(OH)4]2·8H2O的溶解及相转化过程进行了初步探索,结果表明,Rb2Ca[B4O5(OH)4]2·8H2O溶于水后,硼在溶液中主要以B(OH)3和[B(OH)4]-的形式存在,残留固相由开始的无定形水合三硼酸钙,最终部分转变为Ca2[B3O3(OH)5]2·8H2O晶体。  相似文献   
173.
174.
175.
Biocrust effects on soil infiltration have attracted increasing attention in dryland ecosystems, but their seasonal variations in infiltrability have not yet been well understood. On the Chinese Loess Plateau, soil infiltrability indicated by saturated hydraulic conductivity (Ks) of biocrusts and bare soil, both on aeolian sand and loess soil, was determined by disc infiltrometer in late spring (SPR), midsummer (SUM), and early fall (FAL). Then their correlations with soil biological and physiochemical properties and water repellency index (RI) were analysed. The results showed that the biocrusts significantly decreased Ks both on sand during SPR, SUM, and FAL (by 43%, 66%, and 35%, respectively; P < .05) and on loess (by 42%, 92%, and 10%, respectively; P <.05). As compared with the bare soil, the decreased Ks in the biocrusted surfaces was mostly attributed to the microorganism biomass and also to the increasing content of fine particles and organic matter. Most importantly, both the biocrusts and bare soil exhibited significant (F ≥ 11.89, P ≤ .003) seasonal variations in Ks, but their patterns were quite different. Specifically, the Ks of bare soil gradually decreased from SPR to SUM (32% and 42% for sand and loess, respectively) and FAL (29% and 39%); the Ks of biocrusts also decreased from SPR to SUM (59% and 92%) but then increased in FAL (36% and 588%). Whereas the seasonal variations in Ks of the biocrusts were closely correlated with the seasonal variations in RI, the RI values were not high enough to point at hydrophobicity. Instead of that, the seasonal variations of Ks were principally explained by the changes in the crust biomass and possibly by the microbial exopolysaccharides. We conclude that the biocrusts significantly decreased soil infiltrability and exhibited a different seasonal variation pattern, which should be carefully considered in future analyses of hydropedological processes.  相似文献   
176.
The respiratory potential [i.e. electron transport system activity (ETSA)] of soils and sediments from five floodplain habitats (channel, gravel, islands, riparian forest and grassland) of the Urbach River, Switzerland, and actual respiration rate (R) of the same samples exposed to experimental inundation were measured. Measurements were carried out at three incubation temperatures (4°C, 12°C and 20°C), and ETSA/R ratios (i.e. exploitation of the overall metabolic capacity) were investigated to better understand the effects of temperature and inundation on floodplain functional heterogeneity. Furthermore, ETSA/R ratios obtained during experimental inundation were compared with ETSA/R ratios from field measurements to investigate the exploitation in total metabolic potential at different conditions. Lowest ETSA and R were measured in samples from channel and gravel habitats, followed by those from islands. Substantially higher values were measured in soils from riparian forest and grassland. Both ETSA and R increased with increasing temperature in samples from all habitats, while the ETSA/R ratio decreased because of a rapid response in microbial community respiration to higher temperatures. The metabolic capacity exploitation (i.e. ETSA/R) during experimental inundation was lowest in predominantly terrestrial samples (riparian forest and grassland), indicating the weakest response to wetted conditions. Comparison of experimentally inundated and field conditions revealed that in rarely flooded soils, the metabolic capacity was less exploited during inundation than during non‐flooded conditions. The results suggest high sensitivity in floodplain respiration to changes in temperature and hydrological regime. ETSA/R ratios are considered good indicators of changes in metabolic activity of floodplain soils and sediments, and thus useful to estimate the impact of changes in hydrological regime or to evaluate success of floodplain restoration actions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
177.
Within the framework of our discontinuous deformation analysis for rock failure algorithm, this paper presents a two‐dimensional coupled hydromechanical discontinuum model for simulating the rock hydraulic fracturing process. In the proposed approach, based on the generated joint network, the calculation of fluid mechanics is performed first to obtain the seepage pressure near the tips of existing cracks, and then the fluid pressure is treated as linearly distributed loads on corresponding block boundaries. The contribution of the hydraulic pressure to the initiation/propagation of the cracks is considered by adding the components of these blocks into the force matrix of the global equilibrium equation. Finally, failure criteria are applied at the crack tips to determine the occurrence of cracking events. Several verification examples are simulated, and the results show that this newly proposed numerical model can simulate the hydraulic fracturing process correctly and effectively. Although the numerical and experimental verifications focus on one unique preexisting crack, because of the capability of discontinuous deformation analysis in simulating block‐like structures, the proposed approach is capable of modeling rock hydraulic fracturing processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
178.
The hydrology and water balance of megadunes and lakes have been investigated in the Badain Jaran Desert of China. Field observations and analyses of sand layer water content, field capacity, secondary salt content, and grain size reveal 3 types of important natural phenomenon: (a) vegetation bands on the leeward slope of the megadunes reflect the hydrological regime within the sandy vadose zone; (b) seepage, wet sand deposits, and secondary salt deposits indicate the pattern of water movement within the sandy vadose zone; (c) zones of groundwater seeps and descending springs around the lakes reflect the influence of the local topography on the hydrological regime of the megadunes. The seepage exposed on the sloping surface of the megadunes and gravity water contained within the sand layer confirm the occurrence of preferential flow within the vadose zone of the megadunes. Alternating layers of coarse and fine sand create the conditions for the formation of preferential flows. The preferential flows promote movement of water within the sand layer water that leads to deep penetration of water within the megadunes and ultimately to the recharging of groundwater and lake water. Our results indicate that a positive water balance promotes recharge of the megadunes, which depends on the high permeability of the megadune material, the shallow depth of the surface sand layer affected by evaporation, the occurrence of rainfall events exceeding 15 mm, and the sparse vegetation cover. Water balance estimates indicate that the annual water storage of the megadunes is about 7.5 mm, accounting for only 8% of annual precipitation; however, the shallow groundwater per unit area under the megadunes receives only 3.6% of annual precipitation, but it is still able to maintain a dynamic balance of the lake water. From a water budget perspective, the annual water storage in the megadunes is sufficient to serve as a recharge source for lake water, thereby enabling the long‐term persistence of the lakes. Overall, our findings demonstrate that precipitation is a significant component of the hydrological cycle in arid deserts.  相似文献   
179.
The waning stage(s) of the Tethyan ocean(s) in the Balkans are not well understood. Controversy centres on the origin and life‐span of the Cretaceous Sava Zone, which is allegedly a remnant of the last oceanic domain in the Balkan Peninsula, defining the youngest suture between Eurasia‐ and Adria‐derived plates. In order to investigate to what extent Late‐Cretaceous volcanism within the Sava Zone is consistent with this model we present new age data together with trace‐element and Sr–Nd–Pb isotope data for the Klepa basaltic lavas from the central Balkan Peninsula. Our new geochemical data show marked differences between the Cretaceous Klepa basalts (Sava Zone) and the rocks of other volcanic sequences from the Jurassic ophiolites of the Balkans. The Klepa basalts mostly have Sr–Nd–Pb isotopic and trace‐element signatures that resemble enriched within‐plate basalts substantially different from Jurassic ophiolite basalts with MORB, BAB and IAV affinities. Trace‐element modelling of the Klepa rocks indicates 2%–20% polybaric melting of a relatively homogeneously metasomatised mantle source that ranges in composition from garnet lherzolite to ilmenite+apatite bearing spinel–amphibole lherzolite. Thus, the residual mineralogy is characteristic of a continental rather than oceanic lithospheric mantle source, suggesting an intracontinental within‐plate origin for the Klepa basalts. Two alternative geodynamic models are internally consistent with our new findings: (1) if the Sava Zone represents remnants of the youngest Neotethyan Ocean, magmatism along this zone would be situated within the forearc region and triggered by ridge subduction; (2) if the Sava Zone delimits a diffuse tectonic boundary between Adria and Europe which had already collided in the Late Jurassic, the Klepa basalts together with a number of other magmatic centres represent volcanism related to transtensional tectonics.  相似文献   
180.
Surface soil moisture (SSM) is a critical variable for understanding water and energy flux between the atmosphere and the Earth's surface. An easy to apply algorithm for deriving SSM time series that primarily uses temporal parameters derived from simulated and in situ datasets has recently been reported. This algorithm must be assessed for different biophysical and atmospheric conditions by using actual geostationary satellite images. In this study, two currently available coarse‐scale SSM datasets (microwave and reanalysis product) and aggregated in situ SSM measurements were implemented to calibrate the time‐invariable coefficients of the SSM retrieval algorithm for conditions in which conventional observations are rare. These coefficients were subsequently used to obtain SSM time series directly from Meteosat Second Generation (MSG) images over the study area of a well‐organized soil moisture network named REMEDHUS in Spain. The results show a high degree of consistency between the estimated and actual SSM time series values when using the three SSM dataset‐calibrated time‐invariable coefficients to retrieve SSM, with coefficients of determination (R2) varying from 0.304 to 0.534 and root mean square errors ranging from 0.020 m3/m3 to 0.029 m3/m3. Further evaluation with different land use types results in acceptable debiased root mean square errors between 0.021 m3/m3 and 0.048 m3/m3 when comparing the estimated MSG pixel‐scale SSM with in situ measurements. These results indicate that the investigated method is practical for deriving time‐invariable coefficients when using publicly accessed coarse‐scale SSM datasets, which is beneficial for generating continuous SSM dataset at the MSG pixel scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号