首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   0篇
测绘学   1篇
大气科学   11篇
地球物理   13篇
地质学   42篇
海洋学   28篇
综合类   1篇
自然地理   5篇
  2018年   1篇
  2017年   4篇
  2016年   1篇
  2015年   3篇
  2013年   5篇
  2012年   6篇
  2011年   3篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2007年   9篇
  2006年   7篇
  2005年   5篇
  2004年   8篇
  2003年   3篇
  2002年   8篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   5篇
  1993年   2篇
  1987年   1篇
  1985年   3篇
  1982年   1篇
  1981年   3篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有101条查询结果,搜索用时 0 毫秒
81.
82.
83.
84.
The Norwegian Ecological Model (NORWECOM) biophysical model system implemented with the ROMS ocean circulation model has been run to simulate conditions over the last 25 years for the North Atlantic. Modeled time series of water volume fluxes, primary production, and drift of cod larvae through their modeled ambient temperature fields have been analyzed in conjunction with VPA estimated time series of 3-year-old cod recruits in the Barents Sea. Individual time series account for less than 50% of the recruitment variability; however, a combination of simulated flow of Atlantic water into the Barents Sea and local primary production accounts for 70% of the variability with a 3-year lead. The associated regression predicts increased recruitment between 2007 and 2008 from about 450–700 million individuals with a standard error of nearly 150 million.  相似文献   
85.
The concentrations of authigenic phases of Cd, Re, U, and Mo increase with depth in four 45-cm-long sediment box cores collected along the axis of the Laurentian Trough, Gulf of St. Lawrence. Average authigenic accumulation rates, estimated from element inventories, are similar to rates in other continental margin environments. Strong regional variations in sediment accumulation rate and sulfide concentration have little influence on the accumulation rates of Cd and Re. This suggests that slow precipitation kinetics controls the accumulation of Cd and Re in these sediments. The accumulation rate of authigenic U is more variable; it may be tied to the kinetics of microbially mediated U reduction and be controlled by the availability of reactive organic matter. Authigenic Mo is distinguished by a sharp subsurface concentration minimum, above which Mo cycles with manganese. Mo released to pore water upon reduction of Mn oxides diffuses downward and enriches the subsurface sediment. Mo accumulates most rapidly in the sediment with the highest sulfide content. Slow conversion of molybdate to thiomolybdate may explain the much slower Mo accumulation rate in the less sulfidic sediments. A component of authigenic Mo accumulates with pyrite in an approximately constant Mo:Fe ratio. The accumulation rate of pyrite and associated Mo is insensitive to AVS abundance. Pyrite formation may be limited by the reactivity of iron oxide minerals.  相似文献   
86.
The solubility behavior of H2O in melts in the system Na2O-SiO2-H2O was determined by locating the univariant phase boundary, melt = melt + vapor in the 0.8-2 GPa and 1000°-1300°C pressure and temperature range, respectively. The NBO/Si-range of the melts (0.25-1) was chosen to cover that of most natural magmatic liquids. The H2O solubility in melts in the system Na2O-SiO2-H2O (XH2O) ranges between 18 and 45 mol% (O = 1) with (∂XH2O/∂P)T∼14-18 mol% H2O/GPa. The (∂XH2O/∂P)T is negatively correlated with NBO/Si (= Na/Si) of the melt. The (∂XH2O/∂T)P is in the −0.03 to +0.05 mol% H2O/°C range, and is negatively correlated with NBO/Si. The [∂XH2O/∂(NBO/Si)]P,T is in the −3 to −8 mol% H2O/(NBO/Si) range. Melts with NBO/Si similar to basaltic liquids (∼0.6-∼1.0) show (∂XH2O/∂T)P<0, whereas more polymerized melts exhibit (∂XH2O/∂T)P>0. Complete miscibility between hydrous melt and aqueous fluid occurs in the 0.8-2 GPa pressure range for melts with NBO/Si ≤0.5 at T >1100°C. Miscibility occurs at lower pressure the more polymerized the melt.  相似文献   
87.
From experimental data in the systems Na2O-Al2O3-SiO2-H2O, K2O-Al2O3-SiO2-H2O at 1100°C, and CaO-Al2O3-SiO2-H2O at 1200°C in the 1-2 GPa pressure range, the solution behavior of the individual oxides in coexisting H2O-saturated silicate melts and silicate-saturated aqueous fluids appears to be incongruent. Recalculated on an anhydrous basis, in the CaO-Al2O3-SiO2-H2O system, CaOfluid/CaOmelt < 1, whereas in the Na2O-Al2O3-SiO2-H2O and K2O-Al2O3-SiO2-H2O systems, K2Ofluid/K2Omelt and Na2Ofluid/Na2Omelt both are greater than 1. The aqueous fluids are depleted in alumina relative to silicate melt.In the Na2O-Al2O3-SiO2-H2O, K2O-Al2O3-SiO2-H2O, and CaO-Al2O3-SiO2-H2O systems, fluid/melt partition coefficients for the individual oxides range between ∼0.005 and 0.35 depending on oxide, bulk composition and pressure. The alkali partition coefficients are about an order of magnitude higher than that of CaO. Alumina and silica partition coefficient values in the CaO-Al2O3-SiO2-H2O system are 10-20% of the values for the same oxides in the Na2O-Al2O3-SiO2-H2O and K2O-Al2O3-SiO2-H2O systems.Positive correlations among individual partition coefficients and oxide concentrations in the aqueous fluids are consistent with complexing in the fluid that involves silicate polymers associated with alkalis and alkaline earths and aluminosilicate complexes where alkalis and alkaline earths may serve to charge-balance Al3+, which is, perhaps, in tetrahedral coordination. Alkali aluminosilicate complexes in aqueous fluid appear more stable than Ca-aluminosilicate complexes.  相似文献   
88.
The bottom water in the >300 m deep Lower St. Lawrence Estuary (LSLE) is persistently hypoxic in contrast to the normoxic bottom waters in the Gulf of St. Lawrence (GSL). We photographed the seabed at 11 stations in the Estuary and Gulf of St. Lawrence (EGSL) during the summers 2006 and 2007 and analysed the images to identify bioturbation traces (lebensspuren) and benthic macrofauna. The objective was to identify the environmental variables that influence the density and diversity of benthic macrofauna and bioturbation traces, and the differences that exist among regions with high, medium and low oxygen levels in the bottom water. The bottom water oxygen concentration is the variable that best explains the densities of total-traces as well as surface-traces. However, the density of these traces was higher in hypoxic regions than in well-oxygenated regions. The higher density of traces in the hypoxic region of the LSLE is mainly due to the activities of the surface deposit feeder Ophiura sp., which occurs in large numbers in this region. Possible explanations explored are stress behaviour of the organisms in response to hypoxia and different benthic macrofauna community structures between the hypoxic regions of the LSLE and the normoxic regions of the GSL. In the former, surface deposit feeders and low-oxygen tolerant species dominate over suspension feeders and low-oxygen intolerant species.  相似文献   
89.
Three single-column models (all with an explicit liquid water budget and compara-tively high vertical resolution) and three two-dimensional eddy-resolving models (including one with bin-resolved microphysics) are compared with observations from the first ASTEX Lagrangian experiment. This intercomparison was a part of the second GCSS boundary-layer cloud modelling workshop in August 1995.In the air column tracked during the first ASTEX Lagrangian experiment, a shallow subtropical drizzling stratocumulus-capped marine boundary layer deepens after two days into a cumulus capped boundary layer with patchy stratocumulus. The models are forced with time varying boundary conditions at the sea-surface and the capping inversion to simulate the changing environment of the air column.The models all predict the observed deepening and decoupling of the boundary layer quite well, with cumulus cloud evolution and thinning of the overlying stratocumulus. Thus these models all appear capable of predicting transitions between cloud and boundary-layer types with some skill. The models also produce realistic drizzle rates, but there are substantial quantitative differences in the cloud cover and liquid water path between models. The differences between the eddy-resolving model results are nearly as large as between the single column model results. The eddy resolving models give a more detailed picture of the boundary-layer evolution than the single-column models, but are still sensitive to the choice of microphysical and radiative parameterizations, sub-grid-scale turbulence models, and probably model resolution and dimensionality. One important example of the differences seen in these parameterizations is the absorption of solar radiation in a specified cloud layer, which varied by a factor of four between the model radiation parameterizations.  相似文献   
90.
Structural interaction between dissolved fluorine and silicate glass (25°C) and melt (to 1400°C) has been examined with 19F and 29Si MAS NMR and with Raman spectroscopy in the system Na2O-Al2O3-SiO2 as a function of Al2O3 content. Approximately 3 mol.% F calculated as NaF dissolved in these glasses and melts. From 19F NMR spectroscopy, four different fluoride complexes were identified. These are (1) Na-F complexes (NF), (2) Na-Al-F complexes with Al in 4-fold coordination (NAF), (3) Na-Al-F complexes with Al in 6-fold coordination with F (CF), and (4) Al-F complexes with Al in 6-fold, and possibly also 4-fold coordination (TF). The latter three types of complexes may be linked to the aluminosilicate network via Al-O-Si bridges.The abundance of sodium fluoride complexes (NF) decreases with increasing Al/(Al + Si) of the glasses and melts. The NF complexes were not detected in meta-aluminosilicate glasses and melts. The NAF, CF, and TF complexes coexist in peralkaline and meta-aluminosilicate glasses and melts.From 29Si-NMR spectra of glasses and Raman spectra of glasses and melts, the silicate structure of Al-free and Al-poor compositions becomes polymerized by dissolution of F because NF complexes scavenge network-modifying Na from the silicate. Solution of F in Al-rich peralkaline and meta-aluminous glasses and melts results in Al-F bonding and aluminosilicate depolymerization.Temperature (above that of the glass transition) affects the Qn-speciation reaction in the melts, 2Q3 ⇔ Q4 + Q2, in a manner similar to other alkali silicate and alkali aluminosilicate melts. Dissolved F at the concentration level used in this study does not affect the temperature-dependence of this speciation reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号