首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   967篇
  免费   27篇
  国内免费   1篇
测绘学   25篇
大气科学   36篇
地球物理   231篇
地质学   436篇
海洋学   70篇
天文学   106篇
综合类   7篇
自然地理   84篇
  2020年   7篇
  2019年   10篇
  2018年   21篇
  2017年   16篇
  2016年   24篇
  2015年   12篇
  2014年   23篇
  2013年   47篇
  2012年   35篇
  2011年   37篇
  2010年   44篇
  2009年   59篇
  2008年   50篇
  2007年   40篇
  2006年   42篇
  2005年   52篇
  2004年   43篇
  2003年   50篇
  2002年   25篇
  2001年   22篇
  2000年   21篇
  1999年   12篇
  1998年   17篇
  1997年   14篇
  1996年   20篇
  1995年   8篇
  1994年   5篇
  1993年   12篇
  1992年   11篇
  1991年   13篇
  1990年   8篇
  1989年   12篇
  1988年   9篇
  1987年   12篇
  1986年   10篇
  1985年   15篇
  1984年   15篇
  1983年   8篇
  1982年   8篇
  1981年   10篇
  1980年   12篇
  1979年   9篇
  1978年   6篇
  1977年   6篇
  1976年   4篇
  1975年   8篇
  1974年   7篇
  1973年   4篇
  1970年   5篇
  1969年   5篇
排序方式: 共有995条查询结果,搜索用时 953 毫秒
871.
Swath bathymetric, sonar imagery and seismic reflection data collected during the SOPACMAPS cruise Leg 3 over segments of the Vitiaz Trench Lineament and adjacent areas provide new insights on the geometry and the stuctural evolution of this seismically inactive lineament. The Vitiaz Trench Lineament, although largely unknown, is one of the most important tectonic feature in the SW Pacific because it separates the Cretaceous crust of the Pacific Plate to the north from the Cenozoic lithosphere of the North Fiji and Lau Basins to the south. The lineament is considered to be the convergent plate boundary between the Pacific and Australian Plates during midde to late Tertiary time when the Vitiaz Arc was a continuous east-facing are from the Tonga to the Solomon Islands before the development of the North Fiji and Lau Basins. Progressive reversal and cessation of subduction from west to east in the Late Miocene-Lower Plioene have been also proposed. However, precise structures and age of initiation and cessation of deformation along the Vitiaz Trench Lineament are unknown.The lineament consists of the Vitiaz Trench and three discontinuous and elongated troughs (Alexa, Rotuma and Horne Troughs) which connect the Vitiaz Trench to the northern end of the Tonga Trench. Our survey of the Alexa and Rotuma Troughs reveals that the lineament is composed of a series of WNW-ESE and ENE-WSW trending segments in front of large volcanic massifs belonging to the Melanesian Border Plateau, a WNW trending volcanic belt of seamounts and ridges on Pacific crust. The Plateau and Pacific plate lying immediately north of the lineament have been affected by intense normal faulting, collapse, and volcanism as evidenced by a series of tilted blocks, grabens, horsts and ridges trending N 120° to N100° and N60°–70°. This tectonism includes several normal faulting episodes, the latest being very recent and possibly still active. The trend of the fault scarps and volcanic ridges parallels the different segments of the Vitiaz Trench Lineament, suggesting that tectonics and volcanism are related to crustal motion along the lineament.Although the superficial observed features are mainly extensional, they are interpreted as the result of shortening along the Vitiaz Trench Lineament. The fabric north of the lineament would result from subduction-induced normal faulting on the outer wall of the trench and the zig-zag geometry of the Vitiaz Trench Lineament might be due to collision of large volcanic edifices of the Melanesian Border Plateau with the trench, provoking trench segmentation along left-lateral ENE-WSW trending transform zones. The newly acquired bathymetric and seismic data suggest that crustal motion (tectonism associated with volcanism) continued up to recent times along the Vitiaz Trench Lineament and was active during the development of the North Fiji Basin.  相似文献   
872.
New bathymetric and geophysical data were collected in the region east of the island of Malaita during the SOPACMAPS II cruise of the French research vessel L'ATALANTE. This region, part of the Malaita Anticlinorium was interpreted as a piece of oceanic crust from the Ontong Java Plateau obducted over the old Solomon Islands arc during collision between the Pacific and Australian plates. It has been generally accepted that convergent motion between the Australia and Pacific plates since the Late Miocene was absorbed exclusively along the San Cristobal trench, southwest of the Solomon Islands Arc.Bathymetry, imagery, and geophysical data (magnetism, gravity, seismic) acquired during the SOPACMAPS II survey allow us to classify the successive parallel ridges mapped within the region as being recent volcanic, oceanic crust, or deformed sedimentary ridges.Seismic profiling provides evidence of successive compressive events along the Malaita margin caused by the relative motion between the Solomon Islands and the Pacific plate. The main phase of convergence probably occurred during Oligocene-early Miocene time, but some relative motion between the two domains are still being absorbed along the East Malaita boundary. The existence of active faulting in the sedimentary cover throughout the region and the present-day deformation of the outer sedimentary ridge is a good illustration of this phenomenon.  相似文献   
873.
Geological samples from the southern Kerguelen Plateau include Lower Cretaceous basalt and lava breccia, probable Lower Cretaceous conglomerate and shelf limestone, Upper Cretaceous chert with dolomite, Upper Cretaceous-Eocene ooze, and Tertiary conglomerate. Neogene sediments are only a few hundred m thick, and include foraminiferal and diatomaceous ooze, and ice-rafted debris. In conjunction with seismic reflection profiles, the samples indicate Early Cretaceous near-shore volcanism, followed by erosion, sedimentation, and subsidence through Cretaceous; arching of the plateau at the end of Cretaceous; subsidence through Paleogene; widespread emergence in mid-Tertiary; and slow subsidence through Neogene.  相似文献   
874.
We analyze the water mass transformation in coarse (1°) and high (1/6°) resolution ocean simulations with the identical configuration of the CLIPPER model and interannual ERA15 forcing function. Climatological characteristics of surface water mass transformation in the two experiments are quite different. The high resolution experiment exhibits a stronger surface transformation in equatorial and tropical regions, in the Gulf Stream area and in the location of the formation of Subtropical Mode Water (STMW), associated with high levels of eddy kinetic energy. The coarse resolution experiment shows a better representation of the transformation rates corresponding to the densest subpolar mode waters and Labrador Sea Water (LSW). This is explained by the differences in lateral mixing procedures between high and coarse resolution experiments. The high resolution 1/6° run is eddy-resolving only in the tropics and mid-latitudes. In these areas eddies are found to enhance the process of water mass transformation compared to the isopycnal diffusion used to parameterized the eddies in the 1° model. Despite its 1/6° resolution, the high resolution model does not adequately represent eddies in the subpolar gyre and Labrador Sea. In these areas the high resolution model fails to correctly simulate water mass transformation because the lateral mixing (provided through the bi-harmonic sub-gridscale parameterization) of newly ventilated waters with surrounding waters is not efficient enough. In contrast in the coarse 1° resolution model, the strong lateral mixing and the unrealistically broad boundary currents imposed by the high diffusivity required for numerical stability mixes newly formed LSW waters with the warmer and saltier waters of the rim current. Finally, it results in a more effective representation of the surface water mass transformation in high latitudes in the 1° model. A possible impact of the increased lateral diffusion in high resolution experiment on the representation of re-stratification in the Labrador Sea was studied in sensitivity experiments with different lateral diffusion coefficients compared to the regional eddy-resolving 1/15° simulation in the subpolar North Atlantic. If the eddies are not resolved in subpolar latitudes (as in the case of 1/6° model), the GM90 parameterization with the coefficient close to 800 m2 s−1 provides the closest agreement with the solution of eddy-resolving 1/15° model.  相似文献   
875.
The southern Kermadec-Hikurangi convergent margin, east of New Zealand, accommodates the oblique subduction of the oceanic Hikurangi Plateau at rates of 4–5 cm/yr. Swath bathymetry and sidescan data, together with seismic reflection and geopotential data obtained during the GEODYNZ-SUD cruise, showed major changes in tectonic style along the margin. The changes reflect the size and abundance of seamounts on the subducting plateau, the presence and thickness of trench-fill turbidites, and the change to increasing obliquity and intracontinental transpression towards the south. In this paper, we provide evidence that faulting with a significant strike-slip component is widespread along the entire 1000 km margin. Subduction of the northeastern scrap of the Hikurangi Plateau is marked by an offset in the Kermadec Trench and adjacent margin, and by a major NW-trending tear fault in the scarp. To the south, the southern Kermadec Trench is devoid of turbidite fill and the adjacent margin is characterized by an up to 1200 m high scarp that locally separates apparent clockwise rotated blocks on the upper slope from strike-slip faults and mass wasting on the lower slope. The northern Hikurangi Trough has at least 1 km of trench-fill but its adjacent margin is characterized by tectonic erosion. The toe of the margin is indented by 10–25 km for more than 200 km, and this is inferred to be the result of repeated impacts of the large seamounts that are abundant on the northern Hikurangi Plateau. The two most recent impacts have left major indentations in the margin. The central Hikurangi margin is characterized by development of a wide accretionary wedge on the lower slope, and by transpression of presubduction passive margin sediments on the upper slope. Shortening across the wedge together with a component of strike-slip motion on the upper slope supports an interpretation of some strain partitioning. The southern Hikurangi margin is a narrow, mainly compressive belt along a very oblique, apparently locked subduction zone.  相似文献   
876.
It is thought that the large-scale solar-cycle magnetic field is generated in a thin region at the interface of the radiative core (RC) and solar convection zone (SCZ). We show that the bulk of the SCZ virogoursly generates a small-scale turbulent magnetic field. Rotation, while not essential, increases the generation rate of this field.Thus, fully convective stars should have significant turbulent magnetic fields generated in their lower convection zones. In these stars the absence of a radiative core, i.e., the absence of a region of weak buoyancy, precludes the generation of a large-scale magnetic field, and as a consequence the angular momentum loss is reduced. This is, in our opinion, the explanation for the rapid rotation of the M-dwarfs in the Hyades cluster.Adopting the Utrecht's group terminology, we argue that the residual chromospheric emission should have three distinctive components: the basal emission, the emission due to the large-scale field, and the emission due to the turbulent field, with the last component being particularly strong for low mass stars.In the conventional dynamo equations, the dynamo frequencies and the propagation of the dynamo wave towards the equator are based on the highly questionable assumption of a constant . Furthermore, meridional motions, a necessary consequence of the interaction of rotation with convection, are ignored. In this context we discuss Stenflo's results about the global wave pattern decomposition of the solar magnetic field and conclude that it cannot be interpreted in the framework of the conventional dynamo equations.We discuss solar dynamo theories and argue that the surface layers could be essential for the generation of the poloidal field. If this is the case an -effect would not be needed at the RC-SCZ interface (where the toroidal field is generated). The two central problems facing solar dynamo theories may the transport of the surface poloidal field to the RC-SCZ interface and the uncertainty about the contributions to the global magnetic field by the small-scale magnetic features.Visitor, National Solar Observatory, National Optical Astronomy Observatories.The National Optical Astronomy Observatories are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.  相似文献   
877.
Carbonaceous matter occurring in chert deposits of the 3.4-3.2 Ga old Barberton Greenstone Belt (BGB), South Africa, has experienced low grade regional metamorphism and variable degrees of local hydrothermal alteration. Here a detailed study is presented of in situ analysis of carbonaceous particles by LRS (laser Raman spectroscopy) and SIMS (secondary ion mass spectrometry), reporting degree of structural disorder, carbon isotope ratio and nitrogen-to-carbon ratio. This combination of in situ analytical tools is used to interpret the δ13C values of only the best preserved carbonaceous remains, enabling the rejection of non-indigenous (unmetamorphosed) material as well as the exclusion of strongly hydrothermally altered carbonaceous particles. Raman spectroscopy confirmed that all carbonaceous cherts studied here have experienced a regional sub- to lower-greenschist facies metamorphic event. Although this identifies these organics as indigenous to the cherts, it is inferred from petrographic observations that hydrothermal alteration has caused small scale migration and re-deposition of organics. This suggest that morphological interpretation of these carbonaceous particles, and in general of putative microfossils or microlaminae in hydrothermally altered early Archean cherts, should be made with caution. A chert in the Hooggenoeg Formation, which is older than and has been hydrothermally altered by a volcanic event 3445 Ma ago, contains strongly altered carbonaceous particles with a uniform N/C-ratio of 0.001 and a range of δ13C that is shifted from its original value. Cherts of the Kromberg Formation post-date this volcanic event, and contain carbonaceous particles with a N/C-ratio between 0.002 and 0.006. Both the Buck Reef Chert and the Footbridge Chert of the Kromberg Formation have retained fairly well-preserved δ13C values, with ranges from −34‰ to −24‰ and −40‰ to −32 ‰, respectively. Abiologic reactions associated with hydrothermal serpentinization of ultramafic crust (such as Fischer-Tropsch synthesis) were an unlikely source for carbonaceous material in these cherts. The carbonaceous matter in these cherts has all the characteristics of metamorphosed biologic material.  相似文献   
878.
We use a lattice vibrational technique to derive thermophysical and thermochemical properties and phase equilibria in the system MgO-SiO2 at pressures and temperatures relevant to Earth’s mantle. The technique is based on an extension of Kieffer’s model to incorporate details of the phonon spectrum, and it includes treatment of intrinsic anharmonicity. We use a least squares inversion technique applied to available experimental data, and show that it results in an accurate representation of thermodynamic properties and sound wave velocities of high-pressure phases in the system MgSiO3. The vibrational method has been validated against laboratory experimental data in the temperature range between 0 and 2500 K and at pressures between 1 bar and 30 GPa. The technique results in a phase diagram consistent with the majority of thermophysical and thermochemical data. It is shown that intrinsic anharmonicity affects significantly slopes and positions of the phase boundaries. Our analysis indicates inconsistencies in a number of data sets of thermophysical properties for stishovite, majorite and ortho-enstatite necessitating new measurements. For akimotoite elasticity data at high-pressure and high-temperature conditions and 1 bar heat capacity measurements are needed. For stishovite elasticity measurements are necessary to reconcile elasticity data with V-P-T measurements. Additionally V-P-T measurements at pressures higher than 10 GPa are needed, which should be reconciled with V-P-T data at lower pressures. Raman and infrared spectroscopic data are necessary for both clino-enstatite and majorite. Additionally structural data are needed to resolve the discrepancy between values for the degree of disorder in majorite. Volume expansion data for ortho-enstatite are needed and effects causing differences in measured volume expansion should be elucidated.  相似文献   
879.
880.
The Maevatanana deposits consist of gold-bearing quartz–sulphide veins crosscutting banded iron formation (BIF) within a metamorphosed 2.5 Ga greenstone belt. The host rocks are dominated by a sequence of migmatites, gneisses, amphibolites, magnetite-rich quartzites and soapstones, intruded by large granitoid batholiths (e.g. the 0.8 Ga Beanana granodiorite). In the mineralised rocks, pyrite is the dominant sulphide, in addition to accessory chalcopyrite and galena. Outside the immediate ore zone, the BIF is dominated by quartz + magnetite ± hematite, accompanied by cummingtonite, albite and biotite. Gold occurs as globular grains (usually <500 μm) within quartz crystals close to the sulphides and as invisible inclusions within pyrite and chalcopyrite (up to 2,500 ppm Au content). Fluid inclusion textural and microthermometric studies indicate heterogeneous trapping of a low-salinity (∼3.6 wt.% eq. NaCl) aqueous fluid coexisting with a carbonic fluid. Evidence for fluid-phase immiscibility during ore formation includes variable L/V ratios in the inclusions and the fact that inclusions containing different phase proportions occur in the same area, growth zone, or plane. Laser Raman spectroscopy confirms that the vapour phase in these inclusions is dominated by CO2 but shows that it may contain small amounts of CH4 (<1 mol%), H2S (<0.05 mol%) and traces of N2. Fluid inclusion trapping conditions ranged from 220 to 380°C and averaged 250°C. Pressure was on the order of 1–2 kbar. The abundant CO2 and low salinity of the inclusions suggest a metamorphic origin for the fluid. Likewise, the presence of H2S in the fluid and pyritisation of the wall-rock indicate that gold was likely transported by sulphide complexing. Fluid immiscibility was probably triggered by the pressure released by fracturing of the quartzites during fault movements due to competence differences with the softer greenstones. Fracturing greatly enhanced fluid circulation through the BIF, allowing reaction of the sulphide-bearing fluids with the iron oxides. This caused pyrite deposition and concomitant Au precipitation, enhanced by fluid phase separation as H2S partitioned preferentially into the carbonic phase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号