首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1235篇
  免费   38篇
  国内免费   6篇
测绘学   13篇
大气科学   112篇
地球物理   240篇
地质学   425篇
海洋学   93篇
天文学   273篇
综合类   3篇
自然地理   120篇
  2020年   9篇
  2019年   15篇
  2018年   21篇
  2017年   34篇
  2016年   22篇
  2015年   19篇
  2014年   21篇
  2013年   59篇
  2012年   18篇
  2011年   32篇
  2010年   22篇
  2009年   58篇
  2008年   48篇
  2007年   44篇
  2006年   48篇
  2005年   40篇
  2004年   49篇
  2003年   44篇
  2002年   50篇
  2001年   40篇
  2000年   30篇
  1999年   18篇
  1998年   28篇
  1997年   19篇
  1996年   20篇
  1995年   21篇
  1994年   20篇
  1993年   17篇
  1992年   12篇
  1991年   13篇
  1990年   16篇
  1989年   14篇
  1988年   15篇
  1987年   18篇
  1986年   24篇
  1985年   22篇
  1984年   15篇
  1983年   28篇
  1982年   27篇
  1981年   25篇
  1980年   26篇
  1979年   19篇
  1978年   11篇
  1977年   12篇
  1976年   17篇
  1975年   13篇
  1974年   12篇
  1973年   12篇
  1972年   7篇
  1971年   11篇
排序方式: 共有1279条查询结果,搜索用时 31 毫秒
101.
102.
The intrusive complexes of Gremiakha-Vyrmes and Soustov represent the two extremes of the Early Proterozoic alkaline plutons of Kola, predominantly composed of feldespathoidal syenites. Gremiakha-Vyrmes rocks (zircon age: 1,884Lj Ma) have trace-element and isotope signatures (87Sr/86SrtƸ.704, )Ndt,-3-1.3) compatible with an ultimate mantle origin. Soustov syenites (zircon age: 1,872NJ Ma) are totally different and show an acute crustal imprint. They have sodaline and analcite instead of nepheline, contain a plethora of REE-HFSE-rich accessories, and are characterised by elevated contents of F, Cl, REE, Y, Th, U, Zr, Hf, Nb, Ta, Sn, Be, Li, Rb, Tl, Pb and Cs, negative Eu anomalies, K/Rb겞-160, Nd/Thƻ, and Nb/Taᄼ, with extremely high 87Sr/86Srt (>0.720) and, at the same time, relatively high )Ndt (,-1.6-1.7). In this paper, we explore the idea that the anomalous features of Soustov syenites can be explained if we assume they are derived from a metasomatic agent, initially an H2O-CO2 supercritical fluid released by alkaline mafic magmas, that was profoundly contaminated during percolation through crustal materials. As percolation advanced, the bulk composition of the fluid solute changed from alkali halides and carbonates to a silica-undersaturated alkaline melt. When the fluid cooled to a temperature of ~550-600 °C, it reached the point at which vapor and melt were no longer miscible and split into two components, a vapour phase and a Cl- and F-rich silica-undersaturated silicate melt that crystallised to produce Soustov syenites. To study this process, we have developed a numerical method for modelling the solute composition of the fluid during the infiltration metasomatism. Our results, using the LREE abundances and the Sr and Nd isotope composition of a Gremiakha-Vyrmes pegmatite as the starting solute composition of the fluid, and the mode and mineral trace-element and isotope composition of a common Kola gneiss as representative of percolated materials, indicate that the fluid would have acquired a signature closely matching Soustov's, even in the case of Nd isotopes, if the gneiss age is 2.9 Ga, near its real age. This model is still a mere working hypothesis that needs further refinements, but may represent a reasonable explanation of the genesis of anomalous alkaline rocks with high 87Sr/86Srt and )Ndt̾, either saturated or undersaturated, which are difficult to understand in terms of magmatic fractionation/contamination.  相似文献   
103.
Ted Munn founded Boundary-Layer Meteorology in 1970 and served as Editor for 75 volumes over a 25 year period. This short article briefly reviews Ted's scientific career with the Atmospheric Environment Service (of Canada), the International Institute for Applied Systems Analysis in Austria and with the Institute of Environmental Studies at the University of Toronto, and as editor of this journal.  相似文献   
104.
Boundary-layer flow over topography: Impacts of the Askervein study   总被引:2,自引:0,他引:2  
One of the objectives of the Askervein Hill Project was to obtain a comprehensive and accurate dataset for verification of models of flow and turbulence over low hills. In the present paper, a retrospective of the 1982 and 1983 Askervein experiments is presented. The field study is described in brief and is related to similar studies conducted in the early 1980s. Data limitations are discussed and applications of numerical and wind-tunnel models to Askervein are outlined. Problems associated with model simulations are noted and model results are compared with the field measurements.  相似文献   
105.
106.
Organic-rich samples derived from a Middle Cambrian Formation in the Georgina Basin, and from the Middle Proterozoic of the McArthur Basin in northern and central Australia, yielded alginite ranging from immature oil shale material to overmature residue. A maturation scale has been developed based on the thermal evolution of alginite as determined from reflectance and fluorescence. The coalification path of alginite is marked by jumps in contrast to the linear path of wood-derived vitrinite. Six zones have been recognised, ranging from undermature (zone I), through the mature (zones II/III), followed by a stable stage of no change (zone IV) to the overmature (zones V and VI). The onset of oil generation in alginite as evident from the present study is at 0.3% Ro Alg. and is expressed in a change of fluorescence from yellow to brown, and a coalification jump from 0.3 to 0.6% Ro of Alg. In many boreholes zone III can be distinguished between 0.6 and 0.8% Ro of Alg. where subsequent oil generation occurs. Zones II and III represent the oil window.A zone of little or no change designated zone IV, at of alginite follows zones II/III. A marked coalification jump characterises zone V, where a pronounced change in reflectance occurs to >1.0% Ro Alg., signifying peak gas generation. The border of oil preservation lies at the transition of zone V and VI, at 1.6% Ro Alg. In zone VI gas generation only occurs.Comparison of reflectance results with experimental and geochemical pyrolysis data supports high activation energies for hydrocarbon generation from alginite, and therefore a later onset of oil generation than other liptinite macerals (i.e. cutinite, exinite, resinite) as well as a narrow oil window.Transmission electron microscopy (TEM) confirms that alginite does not go through a distinct intermediate stage but that the percentage of unreacted organic matter decreases as maturation proceeds. A clear distinction can be made in TEM between immature alginite, alginite after oil generation, and alginite residue following gas generation. Alginite beyond 1.6% Ro acquires very high densities and the appearance of inertinite in TEM.Bitumens/pyrobitumens make a pronounced contribution to the organic matter throughout the basins and have been shown to effect pyrolysis results by suppressing Tmax. The bitumens/pyrobitumens have been divided into four groups, based on their reflectance and morphology, which in turn appears to be an expression of their genetic history. Their significance is in aiding the understanding of the basins' thermal history, and the timing of oil and gas generation.  相似文献   
107.
Primitive olivine-mica-K-feldspar lamprophyre dykes, dated at 1831 ± 6 Ma, intrude lower greenschist facies rocks of the Early Proterozoic Pine Creek Inlier, of northern Australia. They are spatially, temporally and probably genetically associated with a post-tectonic composite granite-syenite pluton (Mt. Bundey pluton). The dykes have unusually high contents of large-ion-lithophile (LILE) and LREE elements (e.g. Ba up to 10,000 ppm, Ce up to 550 ppm, K2O up to 7.5 wt. %) that resemble the concentrations found in the West Kimberley olivine and leucite lamproites. However, mineralogically the Mt. Bundey lamprophyres resemble shoshonitic lamprophyres and lack any minerals diagnostic of lamproites; leucite or leucite-pseudomorphs are absent. Mineral compositions are also unlike those in lamproites: micas contain higher Al2O3 than lamproitic mica; amphiboles are secondary actinolites after diopside; and oxides consist of zincian-chromian magnetite and groundmass magnetite. Heavy mineral concentrates contain mantle-derived xenocrysts of magnesiochromite, pyrope, Cr-diopside and rutile indicating a depth of sampling > 70 km. The Mt. Bundey lamprophyres are non-peralkaline to borderline peralkaline (molar (K + Na)/Al = 0.8 − 1.0) and potassic rather than ultrapotassic (molar K/Na < 2.5). They have distinctive major element compositions (≈46−49 wt. % SiO2, ≈1.5−2 wt. % MgO, ≈7 wt. % CaO), and element ratios (e.g. molar Al/Ti ≈10, K/Na ≈2) that indicate they are best classified amongst transitional lamproites, i.e. potassic rocks such as cocites, jumillites and Navajominettes, that have geochemical characteristics transitional between Groups I and III. (Foley et al., 1987). The Mt. Bundey lamprophyres have LILE enrichment patterns that resemble the W. Kimberley pamproites but have moderate negative Ta---Nb---Ti anomalies and HREE abundances that are closely similar to the jumillites of southeastern Spain and Mediterranean-type lamproites. Single-stage modelling of Rb---Sr data is consistent with enrichment of the source-region of the Mt. Bundey lamprophyres ≈ 120–170 Ma before partial melting; i.e. at 1.95–2.10 Ga. Source enrichment does not appear to be associated with subduction processes, but may instead relate to incipient rifting of the Archaean basement. Negative Ta---Nb---Ti anomalies in the Mt. Bundey dykes may, therefore, relate to stability of residual titanate minerals in an oxidized subcontinental mantle source. This view is supported by high Fe3+/ΣFe ratios of mantle-derived magnesiochromite xenocrysts which indicate oxidized mantle conditions (ƒo2 ≈ FMQ + 1 long units), and by the presence of xenocrystic Cr-bearing rutile. Although the Mt. Bundey dykes have sampled upper mantle material, the oxidized nature of the magma source-region, and of the magma itself, suggests that conditions may not be favourable for diamond survival at depth nor for diamond transport in transitional lamproite magmas of this kind.  相似文献   
108.
Results are presented from a numerical experiment of wind and shear stress profile development away from a shore line; the water surface is assumed to obey the Charnock-Ellison relation between surface roughness and friction velocity. In typical cases the upwind, land surface is rough relative to the sea and the velocity and shear stress results are qualitatively similar to those for flows from relatively rough to relatively smooth solid surfaces. In the present case, however, the downwind surface roughness and friction velocity vary with position and we find that wind profile development may play a significant role in the relationship between sea surface roughness and fetch.  相似文献   
109.
Five lizardite-chrysotile type serpentinites from California, Guatemala and the Dominican Republic show oxygen isotope fractionations of 15.1 to 12.9 per mil between coexisting serpentine and magnetite (O18 magnetite=–7.6 to –4.6 per mil relative to SMOW). Nine antigorites (mainly from Vermont and S. E. Pennsylvania) show distinctly smaller fractionations of 8.7 to 4.8 per mil (O18 magnetite=–2.6 to +1.7 per mil). Two lizardite and chrysotile serpentinites dredged from the Mid-Atlantic Ridge exhibit fractionations of 10.0 and 12.4 per mil (O18 magnetite=–6.8 and –7.9 per mil, respectively), whereas an oceanic antigorite shows a value of 8.2 per mil (O18 magnetite=–6.2). These data all clearly indicate that the antigorites formed at higher temperatures than the chrysotilelizardites. Electron microprobe analyses of magnetites from the above samples show that they are chemically homogeneous and essentially pure Fe3O2. However, some magnetites from certain other samples that show a wide variation of Cr content also give very erratic oxygen isotopic results, suggesting non-equilibrium. An approximate serpentine-magnetite geothermometer curve was constructed by (1) extrapolation of observed O18 fractionations between coexisting chlorites and Fe-Ti oxides in low-grade pelitic schists whose isotopic temperatures are known from the quartz-muscovite O18 geothermometer, and (2) estimates of the O18 fractionation factor between chlorite and serpentine (assumed to be equal to unity). This serpentine-magnetite geothermometer suggests approximate equilibrium temperatures as follows: continental lizardite-chrysotile, 85° to 115° C; oceanic lizardite and chrysotile, 130° C and 185° C, respectively; oceanic antigorite, 235° C; and continental antigorites, 220° to 460° C.Contribution No. 2029 of the Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91109.  相似文献   
110.
Data are presented for K, Ba, Sr, Rb, Li, Ga, Mg, Mn, and Fe for twelve rhyolitic plagioclases (An28-An46), one dacitic (An53), and three andesitic plagioclases (An68-An81). Additional data are presented for Ga, Gr, V, Ni, Co, Sc, Y, La, Sr, and Ba for two augites, nine hypersthenes, and five hornblendes separated from the same rocks. Distribution factors have been calculated, using these data, and previously published results for coexisting groundmass compositions (=liquids).The plagioclases show a positive correlation between, and a progressive increase in K and Ba (range 0.09–0.58% and 61–610 p.p.m. respectively) with increasing Ab-content. Sr (range 465–880 p.p.m.) shows a well defined maximum between An40-An55. The plagioclases have extremely high K/Rb ratios (mostly > 1,000).This volcanic series is characterised by relatively Mg-rich pyroxenes and hornblendes. The augites contain higher Sc, Cr, Y, Sr, and Y relative to their coexisting hypersthenes, while the hornblendes exhibit higher Sc, V, Ba, Sr, Y, and La relative to coexisting hypersthenes. Very marked differences in concentrations of these elements exist between the rhyolitic and andesitic ferromagnesian phenocrysts. There is also evidence of a systematic distribution of Sc, V, Cr, Y, Co, and Ni between coexisting hypersthenes and hornblendes, and between these minerals and their coexisting whole rock and groundmass compositions.The data are discussed from a petrological viewpoint, as they are interpreted to indicate that the phenocrysts crystallised in the magmas in which they are found, and are not xenocrystic. No evidence of hybridisation or contamination, subsequent to the onset of crystallisation, is found.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号