首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   1篇
  国内免费   1篇
测绘学   1篇
大气科学   21篇
地球物理   3篇
地质学   5篇
  2023年   1篇
  2022年   1篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   4篇
  2014年   1篇
  2013年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  1999年   1篇
  1965年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
11.
12.
This study is focused on the use of ultrasound to disrupt Microcystis aeruginosa growth, with consideration for the gap between laboratory-scale experiment and field application. Laboratory-scale sonication systems with different frequencies (i.e., 20, 584, 869, and 1137 kHz) for 30 min at 10-min intervals were conducted to investigate their effectiveness at disrupting M. aeruginosa growth. The toxicological effect of sonicated M. aeruginosa including microcystin-LR was also evaluated using a Daphnia magna acute toxicity test. High frequencies, 869 and 1137 kHz, resulted in more than a 60% reduction of cells after 30 min of sonication. Low to middle frequencies, 20 and 584 kHz, only showed a 30% reduction of cells after 30 min of sonication. High frequencies also led to the inactivation of cell proliferation during M. aeruginosa regrowth, due to cellular destruction and finally cell death. However, the concentration of microcystin-LR and the potential adverse effects of M. aeruginosa on D. magna could not be controlled using ultrasonic frequencies. Therefore, our results suggest that ultrasonic frequencies between 869 and 1137 kHz are effective at controlling bloom formation in M. aeruginosa and the regrowth of M. aeruginosa after sonication, but not at controlling microcystin-LR concentrations and its adverse effects on D. magna. Consequently, a combined purification technology to reduce the cyanotoxins such as microcystin-LR, rather than ultrasonic frequency alone, will be needed to control M. aeruginosa growth and its toxicity levels in the aquatic environment.  相似文献   
13.
Compacted bentonite has been considered as a candidate buffer material in the underground repository for the disposal of high-level radioactive waste. An erosion of bentonite particles caused by a groundwater flow at the interface of a compacted bentonite and a fractured granite was studied experimentally under various geochemical conditions. The experimental results showed that bentonite particles could be eroded from a compacted bentonite buffer by a flowing groundwater depending upon the contact time, the flow rate of the groundwater, and the geochemical parameters of the groundwater such as the pH and ionic strength.

A gel formation of the bentonite was observed to be a dominant process in the erosion of bentonite particles although an intrusion of bentonite into a rock fracture also contributed to the erosion. The concentration of the eroded bentonite particles eroded by a flowing groundwater was increased with an increasing flow rate of the groundwater. It was observed from the experiments that the erosion of the bentonite particles was considerably affected by the ionic strength of a groundwater although the effect of the pH was not great within the studied pH range from 7 to 10. An erosion of the bentonite particles in a natural groundwater was also observed to be considerable and the eroded bentonite particles are expected to be stable at the given groundwater condition.

The erosion of the bentonite particles by a flowing groundwater did not significantly reduce the physical stability and thus the performance of a compacted bentonite buffer. However, it is expected that an erosion of the bentonite particles due to a groundwater flow will generate bentonite particles in a given groundwater condition, which can serve as a source of the colloids facilitating radionuclide migration through rock fractures.  相似文献   

14.
15.
16.
17.
Summary Changes in local thermal environment associated with the restoration of an inner-city stream in Seoul, Korea, are investigated using observational data. The stream, called the Cheonggye stream, which had been hidden and covered with cement/asphalt for 46 years, runs 5.8 km eastward through a central region of Seoul. Intensive observations were made in the stream area for a number of summertime periods before, during, and after the stream restoration to detect the effects of the stream on local environment and to quantify them. It is estimated that after the stream restoration the near-surface temperature averaged over the stream area dropped by 0.4 °C, with the largest local temperature drop being 0.9 °C. However, it cannot be stated that this 0.4 °C temperature drop is due entirely to the stream effect only, because synoptic-scale and local-scale weather conditions during the two periods were inevitably not identical. The stream effect on air temperature is also evident in the temperature distribution along a street traversing the stream. In the daytime after the stream restoration, the sensible heat flux was greatly reduced and the ratio of sensible heat flux to net radiative flux dramatically decreased. These first-time results of the restored-stream effects on urban thermal environment could contribute to the scientific basis of urban planning which aims to make a large city comfortable to live in and nature- and environment-friendly. Authors’ addresses: Yeon-Hee Kim, Il-Soo Park, Hae-Jung Koo, and Jae-Cheol Nam, Meteorological Research Institute, Korea Meteorological Administration, Seoul 156-720, Korea; Sang-Boom Ryoo, Suwon Meteorological Office, Korea Meteorological Administration, Suwon 441-856, Korea; Jong-Jin Baik, School of Earth and Environmental Sciences, Seoul National University, Seoul 151-742, Korea  相似文献   
18.
19.
20.
Summary The effects of atmospheric boundary-layer stability on urban heat island-induced circulation are numerically and theoretically investigated using a nonlinear numerical model (ARPS) and a two-layer linear analytical model. Numerical model simulations show that as the boundary layer becomes less stable, a downwind updraft cell induced by the urban heat island strengthens. It is also shown that as the boundary layer becomes less stable, both the height of the maximum updraft velocity and the vertical extent of the downwind updraft cell increase. Hence, in the daytime with a nearly neutral or less stable boundary layer the urban heat island-induced circulation can become strong, even though the urban heat island is weak. It is suggested that these findings can be a mechanism for urban-induced thunderstorms observed in the late afternoon or evening with a nearly neutral or less stable boundary layer. The boundary-layer stability affects the spatial distribution of scalar concentration through its influencing urban heat island-induced circulation. Analytical results from a two-layer model with different boundary-layer stabilities in the lower and upper layers are in general qualitatively consistent with the numerical simulation results, although the low-level maximum vertical velocity does not change monotonically with lower-layer stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号