To achieve accurate evaluation of evapotranspiration of reference crops (ET0) in Jiangxi, China, in the absence of systematic climatological data, with reference to the FAO-56 Penman–Monteith (P-M) equation, the Priestley-Taylor (P–T) method, the Makkink method, the Hargreaves-Samani (H–S) method, the Irmak-Allen (I-A) method, the Penman1948 (48PM) method, the Penman-Van Bavel (PVB) method, the Baier-Robertson (B-R) method, the improved Baier-Robertson (M-B-R) method, the Schendel (Sch) method, the Turc method, the Jensen-Haise (J-H) method, and the Brutsaert-Stricker (B-S) method were used to evaluate the daily climatological data collected by 26 weather stations in Jiangxi, China, and 17 weather stations in adjacent provinces. The results were compared with each other and parameter rate determination was conducted. The results indicated that the Turc method exhibited optimized applicability before parameter rate determination and the average root mean square error (RMSE) and the average normalized root mean square error (NRMSE) by this method were 0.39 mm/d and 0.157 mm, respectively. However, parameter rate determination led to negligible improvement in accuracy for this method. The Turc method could be directly applied in Jiangxi (except Nanchang). For special distribution of error after parameter rate determination, all methods exhibited significant errors in Northern Jiangxi. Herein, the 48PM method and the B-S method showed good applicability after parameter rate determination and RMSE and NRMSE of data by these methods ranged in 0.06 ~ 0.34 mm/d and 0.08 ~ 0.27, 8 ~ 27%, respectively, and their d-indices were close to 1. The annual over-estimations in weather stations in Jiangxi were below 30 mm. In the absence of data about relative humidity and wind speed, the P–T method was an appropriate simplified method for Jiangxi. In this case, α was slightly lower than the default value (1.05 ~ 1.18), RMSE was within 0.21 ~ 0.66 mm/d, and NRMSE was within 0.08 ~ 0.308 ~ 30%. Accuracy of RMSE, d-index, and NRMSE of data by the P–T method, the I-A method, and the PVB method was consistent with all stations, while that by the Mak method was slightly lower, which could be attributed to severe over-estimation in July and August. RMSE of the H–S method, the B-R method, the M-B-R method, the J-H method, and the Sch method were above 0.75 mm/d and these methods were not suitable for accurate evaluation of ET0 in Jiangxi, China. The annual ET0 was calculated by various methods (except the 48PM method and the B-S method) exhibited significant variation around 2003. This may be attributed to significant changes in certain meteorological factors over recent years.
A series of experiments were conducted about the effects of different CO_2 concentrations andventilating time on cotton using OPT-1 open top chambers.The results show that.for all theventilating treatments,the development stages of cotton were advanced,plant height increased,thebiomass of root and stalk increased when CO_2 concentration increased: the number of bolls formed insummer was more than 85% of the total for the treatment of 700 ppm CO_2 concentration; single bollweight,the number of bolls per plant,ginned and unginned cotton weights,and stalk weightincreased obviously when CO_2 concentration increased,but the influences of CO_2 enrichment on theratio of ginned weight to the total weight of ginned and unginned cotton,fibre length and ginnedweight of 100-seed were small. 相似文献