首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1459篇
  免费   291篇
  国内免费   355篇
测绘学   63篇
大气科学   374篇
地球物理   398篇
地质学   718篇
海洋学   139篇
天文学   75篇
综合类   124篇
自然地理   214篇
  2024年   9篇
  2023年   30篇
  2022年   65篇
  2021年   66篇
  2020年   81篇
  2019年   68篇
  2018年   83篇
  2017年   65篇
  2016年   74篇
  2015年   68篇
  2014年   77篇
  2013年   67篇
  2012年   75篇
  2011年   79篇
  2010年   87篇
  2009年   70篇
  2008年   63篇
  2007年   73篇
  2006年   72篇
  2005年   77篇
  2004年   46篇
  2003年   70篇
  2002年   61篇
  2001年   50篇
  2000年   59篇
  1999年   89篇
  1998年   56篇
  1997年   43篇
  1996年   33篇
  1995年   51篇
  1994年   32篇
  1993年   40篇
  1992年   25篇
  1991年   18篇
  1990年   12篇
  1989年   12篇
  1988年   13篇
  1987年   11篇
  1986年   6篇
  1985年   5篇
  1984年   4篇
  1983年   3篇
  1982年   1篇
  1981年   3篇
  1979年   3篇
  1978年   1篇
  1976年   1篇
  1958年   8篇
排序方式: 共有2105条查询结果,搜索用时 15 毫秒
281.
湖泊是对环境变化响应敏感的地理单元,湖泊消长与响应机制研究对维持区域生态系统稳定具有重要意义。基于1999—2018年Landsat、气象、水文和农业种植面积等多种数据,在ArcGIS平台中利用改进归一化差异水体指数(MNDWI)及目视修正方法提取了乌兰布和沙漠东南缘湖泊群空间信息,运用统计学方法对主要驱动因子与湖泊消涨的关系进行了分析。结果表明:1999—2018年乌兰布和沙漠东南缘大湖泊(面积大于100 hm2)在面积上占优势,小湖泊(面积小于100 hm2)在数量占优势。趋势分析表明大湖泊面积和数量呈显著性减少趋势(相关系数分别为R=0.624 > R18,0.01=0.561和R=0.648 > R18,0.01=0.561);小湖泊减少趋势不显著。在空间分布格局上,研究区中部是大湖泊稳定分布区,大湖泊数量11~23个,面积2 208~4 581 hm2。研究区湖泊消长主要受到年实际引黄水量、农田面积和地下水埋深的影响。其中,实际引黄(河)水量影响所有湖泊(P≤0.01),而农田面积和地下水埋深分别对大湖泊(P≤0.01)和小湖泊(P≤0.05)影响显著。用这3个因子分别构建的多元回归模型显示,在大、小湖泊面积和数量预测方面,精度分别达到75.7%和60.5%以上。  相似文献   
282.
Bai  Wenguang  Zhang  Peng  Zhang  Wenjian  Li  Jun  Ma  Gang  Qi  Chengli  Liu  Hui 《中国科学:地球科学(英文版)》2020,63(9):1353-1365
Due to the polarization effects of the Earth's surface reflection and atmospheric particles' scattering, high-precision retrieval of atmospheric parameters from near-infrared satellite data requires accurate vector atmospheric radiative transfer simulations. This paper presents a near-infrared vector radiative transfer model based on the doubling and adding method. This new model utilizes approximate calculations of the atmospheric transmittance, reflection, and solar scattering radiance for a finitely thin atmospheric layer. To verify its accuracy, the results for four typical scenarios(single molecular layer with Rayleigh scattering, single aerosol layer scattering, multi-layer Rayleigh scattering, and true atmospheric with multi-layer molecular absorption, Rayleigh and aerosol scattering) were compared with benchmarks from a well-known model. The comparison revealed an excellent agreement between the results and the reference data, with accuracy within a few thousandths. Besides, to fulfill the retrieval algorithm, a numerical differentiation-based Jacobian calculation method is developed for the atmospheric and surface parameters. This is coupled with the adding and doubling process for the radiative transfer calculation. The Jacobian matrix produced by the new algorithm is evaluated by comparison with that from the perturbation method. The relative Jacobian matrix deviations between the two methods are within a few thousandths for carbon dioxide and less than 1.0×10~(-3)% for aerosol optical depth. The two methods are consistent for surface albedo, with a deviation below 2.03×10~(-4)%. All validation results suggest that the accuracy of the proposed radiative transfer model is suitable for inversion applications. This model exhibits the potential for simulating near-infrared measurements of greenhouse gas monitoring instruments.  相似文献   
283.
Dissolved organic matter (DOM) is a group of compounds that have complex chemical structures and multiple interactions with their surrounding materials. More than one trillion tons of DOM are stocked in the world’s aquatic ecosystems. DOM is a very important part of aquatic ecosystem productivity and plays a crucial role in global carbon cycling. DOM has rich environmental behaviors and effects such as influencing the bioavailability of contaminants, serving as an important inducer of reactive oxygen species (ROS), and protecting aquatic organisms from the harm of dangerous ultraviolet radiation. There have been many systematic studies on the composition, structure, and sources of DOM because such studies are much easier to conduct than studies on the environmental behaviors and effects of DOM. Due to many factors, the research systems of DOM’s environmental behaviors and effects are still being developed and have become a hotspot of environmental science. This review paper focuses on some critical progress, problems, and trends of DOM’s environmental behaviors and effects in aquatic ecosystems, including mutual exchange mechanisms between DOM and particulate organic matter (POM) with influencing factors, photochemical behaviors of DOM especially inducing ROS, binding interactions between DOM and anthropogenic organic contaminants (AOC), interactions between DOM and microorganisms, effects of DOM on pollutants’ bioavailability, ecotoxicity, and ecological risks. Hopefully, this paper will contribute to a more systematic understanding of the DOM environmental behaviors and effects and to promoting further relevant studies.  相似文献   
284.
滇西南普洱一带地质构造复杂,中-强地震成群活动特征明显,地壳的形变特征与形变机制引起了地学界的广泛关注和深入研究。在参考、借鉴以往研究成果的基础上,本文构建了普洱一带包含活动断裂的二维板有限元模型,以GPS测量得到的块体年运动量作为模型区域的边界约束,模拟计算获得了普洱地区的构造形变空间分布,以NEE、NNW 2个方向、从数值模拟角度对普洱地区的水平形变特征和区域地壳垂直形变场进行了分析和探讨。结果表明:在青藏高原东南缘扩展、高原物质重力滑塌型南东向移动的动力学背景下,研究区内NEE向断裂的活动带动牵引NNW向断裂共轭运动,隆升性质的垂直形变场与60年的大区域水准测量结果相吻合,沿NNW向形变场的分布无规律,应是区域应力累积和震后调整双重作用的结果。沿NEE向形变场呈现了较明显的西部大于东部的分布图像,特别是西北部高值区对应了2014年景谷6.6级强震,最后对研究区的区域动力学问题进行了初步探讨。  相似文献   
285.
286.
Characterization of gravity wave(GW)parameters for the stratosphere is critical for global atmospheric circulation models.These parameters are mainly determined from measurements.Here,we investigate variation in inertial GW activity with season and latitude in the lower stratosphere(18-25 km)over China,using radiosonde data with a high vertical resolution over a 2-year period.Eight radiosonde stations were selected across China,with a latitudinal range of 22°-49°N.Analyses show that the GW energy in the lower stratosphere over China has obvious seasonal variation and a meridional distribution,similar to other regions of the globe.The GW energy is highest in winter,and lowest in summer;it decreases with increasing latitude.Velocity perturbations with longitude and latitude are almost the same,indicating that GW energy is horizontally isotropic.Typically,85%of the vertical wavelength distribution is concentrated between elevations of 1 and 3 km,with a mean value of 2 km;it is almost constant with latitude.Over 80%of all the horizontal wavelengths occur in the range 100-800 km,with a mean value of 450km;they show a weak decrease with increasing latitude,yielding a difference of about 40 km over the 22°-49°N range.The ratio of horizontal wavelength over vertical wavelength is about 200:1,which implies that inertial GWs in the lower stratosphere propagate along nearly horizontal planes.Ratios of their intrinsic frequency to the Coriolis parameter decrease with increasing latitude;most values are between 1 and 2,with a mean value of 1.5.Study of the propagation directions of GW energy shows that upward fractions account for over 60%at all stations.In contrast,the horizontal propagation direction is significantly anisotropic,and is mainly along prevailing wind directions;this anisotropy weakens with increasing latitude.  相似文献   
287.
Stable isotope paleoaltimetry has provided unprecedented insights into the topographic histories of many of the world’s highest mountain ranges. However, on the Tibetan Plateau (TP), stable isotopes from paleosols generally yield much higher paleoaltitudes than those based on fossils. It is therefore essential when attempting to interpret accurately this region’s paleoaltitudes that the empirical calibrations of local stable isotopes and the relations between them are established. Additionally, it is vital that careful estimations be made when estimate how different isotopes sourced from different areas may have been influenced by different controls. We present here 29 hydrogen isotopic values for leaf wax-derived n-alkanes (i.e., δDwax values, and abundance-weighted average δD values of C29 and C31) in surface soils, as well as the δD values of soil water (δDsw) samples (totaling 22) from Mount Longmen (LM), on the eastern TP (altitude ~0.8–4.0 km above sea level (asl), a region climatically affected by the East Asian Monsoon (EAM). We compared our results with published data from Mount Gongga (GG). In addition, 47 river water samples, 55 spring water samples, and the daily and monthly summer precipitation records (from May to October, 2015) from two precipitation observation stations were collected along the GG transect for δD analysis. LM soil δDwax values showed regional differences and responded strongly to altitude, varying from?160‰ to?219‰, with an altitudinal lapse rate (ALR) of?18‰ km?1 (R 2=0.83; p<0.0001; n=29). These δDwax values appeared more enriched than those from the GG transect by ~40‰. We found that both the climate and moisture sources led to the differences observed in soil δDwax values between the LM and GG transects. We found that, as a general rule, ε wax/rw, ε wax/p and ε wax/sw values (i.e., the isotopic fractionation of δDwax corresponding to δDrw, δDp and δDsw) increased with increasing altitude along both the LM and GG transects (up to 34‰and 50‰, respectively). Basing its research on a comparative study of δDwax, δDp, δDrw(δDspringw) and δDsw, this paper discusses the effects of moisture recycling, glacier-fed meltwater, relative humidity (RH), evapotranspiration (ET), vegetation cover, latitude, topography and/or other factors on ε wax/p values. Clearly, if ε wax-p values at higher altitudes are calculated using smaller ε wax-p values from lower altitudes, the calculated paleowaterδDp values are going to be more depleted than the actual δD values, and any paleoaltitude would therefore be overestimated.  相似文献   
288.
289.
River confluences and their associated tributaries are key morphodynamic nodes that play important roles in controlling hydraulic geometry and hyporheic water exchange in fluvial networks. However, the existing knowledge regarding hyporheic water exchange associated with river confluence morphology is relatively scarce. On January 14 and 15, 2016, the general hydraulic and morphological characteristics of the confluent meander bend (CMB) between the Juehe River and the Haohe River in the southern region of Xi'an City, Shaanxi Province, China, were investigated. The patterns and magnitudes of vertical hyporheic water exchange (VHWE) were estimated based on a one‐dimensional heat steady‐state model, whereas the sediment vertical hydraulic conductivity (Kv) was calculated via in situ permeameter tests. The results demonstrated that 6 hydrodynamic zones and their extensions were observed at the CMB during the test period. These zones were likely controlled by the obtuse junction angle and low momentum flux ratio, influencing the sediment grain size distribution of the CMB. The VHWE patterns at the test site during the test period mostly showed upwelling flow dominated by regional groundwater discharging into the river. The occurrence of longitudinal downwelling and upwelling patterns along the meander bend at the CMB was likely subjected to the comprehensive influences of the local sinuosity of the meander bend and regional groundwater discharge and finally formed regional and local flow paths. Additionally, in dominated upwelling areas, the change in VHWE magnitudes was nearly consistent with that in Kv values, and higher values of both variables generally occurred in erosional zones near the thalweg paths of the CMB, which were mostly made up of sand and gravel. This was potentially caused by the erosional and depositional processes subjected to confluence morphology. Furthermore, lower Kv values observed in downwelling areas at the CMB were attributed to sediment clogging caused by local downwelling flow. The confluence morphology and sediment Kv are thus likely the driving factors that cause local variations in the VHWE of fluvial systems.  相似文献   
290.
All petroliferous basins exhibit near-surface anomalous signals. The successful use of these signals must lead to great development in petroleum exploration. However, oil/gas fields cannot be effectively predicted in the case of intensive influence of caprock thickness on intensities of anomalies in a geochemical survey for hydrocarbons. In this paper, we first study the features of the influence of caprock thickness and then establish digital conceptual models for the influence in one and two dimensions. Finally, we develop techniques for eliminating this influence with wavelet analysis, based on the digital conceptual models. The newly developed techniques are applied to the actual data of acid-extractable hydrocarbons of soils in the southern slope of the Dongying Depression, East China where the anomaly intensities are considerably influenced by caprock thickness. The results illustrate that this new approach enables us to satisfactorily eliminate the influence of caprock thickness on anomaly intensities and thus can greatly improve the predictive capability of the existing geochemical data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号