首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   9篇
大气科学   9篇
地球物理   41篇
地质学   48篇
海洋学   28篇
天文学   13篇
自然地理   40篇
  2023年   1篇
  2021年   1篇
  2020年   3篇
  2019年   5篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   24篇
  2012年   11篇
  2011年   5篇
  2010年   9篇
  2009年   5篇
  2008年   10篇
  2007年   10篇
  2006年   2篇
  2005年   9篇
  2004年   3篇
  2003年   5篇
  2002年   14篇
  2001年   5篇
  2000年   5篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1973年   2篇
排序方式: 共有179条查询结果,搜索用时 15 毫秒
81.
82.
83.
84.
High‐resolution loss‐on‐ignition analyses of lacustrine sediment cores from both proglacial and non‐glacial lakes in southern Norway have revealed a specific pattern characterised by a significant, two‐peaked reduction of the loss‐on‐ignition values in the basal half of the cores. In non‐glacier‐fed lakes, the loss‐on‐ignition variations are interpreted to reflect mainly lake productivity and hence variability in surface summer air temperature. Sediments deposited in proglacial lakes, however, reflect mainly the glacier activity in the lake catchment. Bulk AMS radiocarbon dates from the core sequences and the loss‐on‐ignition curve pattern suggest that this event correlates with the ‘8200 cal. yr BP event’ recorded in the GRIP and GISP2 Greenland ice‐cores, termed the Finse event in southern Norway. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
85.
86.
Holocene rockwall retreat rates quantify integral values of rock slope erosion and talus cone evolution. Here we investigate Holocene rockwall retreat of exposed arctic sandstone cliffs in Longyeardalen, central Svalbard and apply laboratory‐calibrated electrical resistivity tomography (ERT) to determine talus sediment thickness. Temperature–resistivity functions of two sandstone samples are measured in the laboratory and compared with borehole temperatures from the talus slope. The resistivity of the higher and lower‐porosity sandstone at relevant borehole permafrost temperatures defines a threshold range that accounts for the lithological variability of the dominant bedrock and debris material. This helps to estimate the depth of the transition from higher resistivities of ice‐rich debris to lower resistivities of frozen bedrock in the six ERT transects. The depth of the debris–bedrock transition in ERT profiles is confirmed by a pronounced apparent resistivity gradient in the raw data plotted versus depth of investigation. High‐resolution LiDAR‐scanning and ERT subsurface information were collated in a GIS to interpolate the bedrock surface and to calculate the sediment volume of the talus cones. The resulting volumes were referenced to source areas to calculate rockwall retreat rates. The rock mass strength was estimated for the source areas. The integral rockwall retreat rates range from 0.33 to 1.96 mm yr–1, and are among the highest rockwall retreat rates measured in arctic environments, presumably modulated by harsh environmental forcing on a porous sandstone rock cliff with a comparatively low rock mass strength. Here, we show the potential of laboratory‐calibrated ERT to provide accurate estimates of rockwall retreat rates even in ice‐rich permafrost talus slopes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
87.
Sonar performance modeling is crucial for submarine and anti–submarine operations. The validity of sonar performance models is generally limited by environmental uncertainty, and particularly uncertainty in the vertical sound speed profile (SSP). Rapid environmental assessment (REA) products, such as oceanographic surveys and ocean models may be used to reduce this uncertainty prior to sonar operations. Empirical orthogonal functions (EOF) applied on the SSPs inherently take into account the vertical gradients and therefore the acoustic properties. We present a method that employs EOFs and a grouping algorithm to divide a large group of SSPs from an ocean model simulation into smaller groups with similar SSP characteristics. Such groups are henceforth called acoustically stable groups. Each group represents a subset in space and time within the ocean model domain. Regions with low acoustic variability contain large and geographically contiguous acoustically stable groups. In contrast, small or fragmented acoustically stable groups are found in regions with high acoustic variability. The main output is a map of the group distribution. This is a REA product in itself, but the map may also be used as a planning aid for REA survey missions.  相似文献   
88.
Structures controlled by the IMF By sign and season of the year have been detected based on the decomposition of field-aligned current maps constructed using magnetic field measurements on polar low-orbiting satellites. It has been indicated that field-aligned currents have identical structures, composed of the main polar circular current and the return current at the polar cap dayside boundary, at any By sign in the summer hemisphere. Two different types of structures are implemented under winter conditions depending on the By sign. For the northern winter, it is the polar circular current and the return current at the polar cap nightside boundary at By < 0; current sheets are strongly stretched along latitudes below 80° MLat, and only small part of the current is in the noon sector of the polar cap. For the summer winter, the corresponding structures are implemented at opposite By signs. The intensities of the field-aligned currents, originating as a result of the interhemispheric asymmetry and flowing along closed geomagnetic field lines near the polar cap boundary, have been estimated. The maximum of the interhemispheric current density is 0.25 μA m−2 in the summer and 0.1 μA m−2 in the winter; the total current is 5 × 105 and 5 × 104 A, respectively.  相似文献   
89.
A nonlinear backpropagation network (BPN) has been trained with high-resolution multiproxy reconstructions of temperature and precipitation (input data) and glacier length variations of the Alpine Lower Grindelwald Glacier, Switzerland (output data). The model was then forced with two regional climate scenarios of temperature and precipitation derived from a probabilistic approach: The first scenario (“no change”) assumes no changes in temperature and precipitation for the 2000–2050 period compared to the 1970–2000 mean. In the second scenario (“combined forcing”) linear warming rates of 0.036–0.054°C per year and changing precipitation rates between −17% and +8% compared to the 1970–2000 mean have been used for the 2000–2050 period. In the first case the Lower Grindelwald Glacier shows a continuous retreat until the 2020s when it reaches an equilibrium followed by a minor advance. For the second scenario a strong and continuous retreat of approximately −30 m/year since the 1990s has been modelled. By processing the used climate parameters with a sensitivity analysis based on neural networks we investigate the relative importance of different climate configurations for the Lower Grindelwald Glacier during four well-documented historical advance (1590–1610, 1690–1720, 1760–1780, 1810–1820) and retreat periods (1640–1665, 1780–1810, 1860–1880, 1945–1970). It is shown that different combinations of seasonal temperature and precipitation have led to glacier variations. In a similar manner, we establish the significance of precipitation and temperature for the well-known early eighteenth century advance and the twentieth century retreat of Nigardsbreen, a glacier in western Norway. We show that the maritime Nigardsbreen Glacier is more influenced by winter and/or spring precipitation than the Lower Grindelwald Glacier.  相似文献   
90.
Atle Nesje   《Quaternary Science Reviews》2009,28(21-22):2119-2136
During the early Holocene abrupt, decadal to centennial-scale climate variations caused significant glacier variations in Norway. Increased freshwater inflow to the North Atlantic and Arctic Oceans has been suggested as one of the most likely mechanisms to explain the abrupt and significant Lateglacial and early Holocene climatic events in NW Europe. The largest early Holocene glacier readvances occurred 11,200, 10,500, 10,100, 9700, 9200 and 8400–8000 cal. yr BP. The studied Norwegian glaciers apparently melted away at least once during the early/mid-Holocene. The period with the most contracted glaciers in Scandinavia was between 6600 and 6000 cal. yr BP. Subsequent to 6000 cal. yr BP the glaciers started to advance and the most extensive glaciers existed at about 5600, 4400, 3300, 2300, 1600 cal. yr BP, and during the ‘Little Ice Age’. Times with overall less glacier activity were apparently around 5000, 4000, 3000, 2000, and 1200 cal. yr BP. It has been proposed that several glacier advances occurred in Scandinavia (including northern Sweden) at 8500–7900, 7400–7200, 6300–6100, 5900–5800, 5600–5300, 5100–4800, 4600–4200, 3400–3200, 3000–2800, 2700–2000, 1900–1600, 1200–1000, and 700–200 cal. yr BP. Glaciers in northern Sweden probably reached their greatest ‘Little Ice Age’ extent between the 17th and the beginning of the 18th centuries. Evidence for early Holocene glacier advances in northern Scandinavia, however, has been questioned by more recent, multi-disciplinary studies. The early to mid-Holocene glacier episodes in northern Sweden may therefore be questioned.Most Norwegian glaciers attained their maximum ‘Little Ice Age’ extent during the mid-18th century. Cumulative glacier length variations in southern Norway, based on marginal moraines dated by lichenometry and historic evidence, show an overall retreat from the mid-18th century until the 1930s–40s. Subsequently, most Norwegian glaciers retreated significantly. Maritime outlet glaciers with short frontal time lags (<10–15 years) started to advance in the mid-1950s, whereas long outlet glaciers with longer frontal time lags (>15–20 years) continued their retreat to the 1970s and 1980s. However, maritime glaciers started to advance as a response to higher winter accumulation during the first part of the 1990s. After 2000 several of the observed glaciers have retreated remarkably fast (annual frontal retreat > 100 m) mainly due to high summer temperatures. The general glacier retreat during the early Holocene and the Neoglacial advances after 6000 cal. yr BP are in line with orbital forcing, due to the decrease of Northern Hemisphere summer solar insolation and the increase in winter insolation. In addition, regional weather modes, such as the North Atlantic Oscillation (NAO) and the Arctic Oscillation (AO), play a significant role with respect to decadal and multi-decadal climate variability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号