首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   9篇
大气科学   9篇
地球物理   41篇
地质学   48篇
海洋学   28篇
天文学   13篇
自然地理   40篇
  2023年   1篇
  2021年   1篇
  2020年   3篇
  2019年   5篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   24篇
  2012年   11篇
  2011年   5篇
  2010年   9篇
  2009年   5篇
  2008年   10篇
  2007年   10篇
  2006年   2篇
  2005年   9篇
  2004年   3篇
  2003年   5篇
  2002年   14篇
  2001年   5篇
  2000年   5篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1973年   2篇
排序方式: 共有179条查询结果,搜索用时 31 毫秒
21.
Time‐domain electromagnetic data are conveniently inverted by using smoothly varying 1D models with fixed vertical discretization. The vertical smoothness of the obtained models stems from the application of Occam‐type regularization constraints, which are meant to address the ill‐posedness of the problem. An important side effect of such regularization, however, is that horizontal layer boundaries can no longer be accurately reproduced as the model is required to be smooth. This issue can be overcome by inverting for fewer layers with variable thicknesses; nevertheless, to decide on a particular and constant number of layers for the parameterization of a large survey inversion can be equally problematic. Here, we present a focusing regularization technique to obtain the best of both methodologies. The new focusing approach allows for accurate reconstruction of resistivity distributions using a fixed vertical discretization while preserving the capability to reproduce horizontal boundaries. The formulation is flexible and can be coupled with traditional lateral/spatial smoothness constraints in order to resolve interfaces in stratified soils with no additional hypothesis about the number of layers. The method relies on minimizing the number of layers of non‐vanishing resistivity gradient, instead of minimizing the norm of the model variation itself. This approach ensures that the results are consistent with the measured data while favouring, at the same time, the retrieval of horizontal abrupt changes. In addition, the focusing regularization can also be applied in the horizontal direction in order to promote the reconstruction of lateral boundaries such as faults. We present the theoretical framework of our regularization methodology and illustrate its capabilities by means of both synthetic and field data sets. We further demonstrate how the concept has been integrated in our existing spatially constrained inversion formalism and show its application to large‐scale time‐domain electromagnetic data inversions.  相似文献   
22.
The task of determining the origin of a drifting object after it has been located is highly complex due to the uncertainties in drift properties and environmental forcing (wind, waves, and surface currents). Usually, the origin is inferred by running a trajectory model (stochastic or deterministic) in reverse. However, this approach has some severe drawbacks, most notably the fact that many drifting objects go through nonlinear state changes underway (e.g., evaporating oil or a capsizing lifeboat). This makes it difficult to naively construct a reverse-time trajectory model which realistically predicts the earliest possible time the object may have started drifting. We propose instead a different approach where the original (forward) trajectory model is kept unaltered while an iterative seeding and selection process allows us to retain only those particles that end up within a certain time–space radius of the observation. An iterative refinement process named BAKTRAK is employed where those trajectories that do not make it to the goal are rejected, and new trajectories are spawned from successful trajectories. This allows the model to be run in the forward direction to determine the point of origin of a drifting object. The method is demonstrated using the leeway stochastic trajectory model for drifting objects due to its relative simplicity and the practical importance of being able to identify the origin of drifting objects. However, the methodology is general and even more applicable to oil drift trajectories, drifting ships, and hazardous material that exhibit nonlinear state changes such as evaporation, chemical weathering, capsizing, or swamping. The backtracking method is tested against the drift trajectory of a life raft and is shown to predict closely the initial release position of the raft and its subsequent trajectory.  相似文献   
23.
Anmeldelser     
Meyer, Marlene: Settlement Patterns and Land-use in Northern Ghana—A Study of the Changes during the period 1963–1991 based on Historical Surveys and recent SPOT-images. Geografisk Tidsskrift 92:101–104. Copenhagen 1992.

A study by Hunter (1966) describes how large areas along the Red Volta River bank, have been abandoned due to river blindness. The mapping of current land-use status and settlements patterns, using multispectral SPOT-satellite images, shows how the border of settlements continue to retreat, whereas new land is being reclaimed for bush fields in the abandoned areas.  相似文献   
24.
Christiansen, C. & Bowman, D.: Sea-level changes, coastal dune building and sand drift, North-Western Jutland, Denmark. Geografisk Tidsskrift 86: 28–31. Copenhagen, June 1986.

Two main models linking dune building and sea level changes have so far been proposed. Application of the low sea level model suggests that the major Danish dune building period from 1550 to 1750 need not necessarily be the result of human activity. The dune building period is probably related to a low sea level and the reworking of exposed shallow marine sand.  相似文献   
25.
An automatic meteorological station has been operating at the Arctic Station (69°15'N, 53°31'W) in West Greenland since 1990. This paper summarises meteorological parameters during 2002, including snow cover, ground temperatures and active layer development, and air temperatures at the Station during the last 12 years are compared to large scale trends during the last century.

A compilation of 93 sedimentation rate determinations based on 210Pb dating has been carried out for the North Sea-Baltic Sea transition area from a database containing 165 determinations carried out by Danish institutions. In the depositional parts of the area sedimentation rates generally range 25–6403 g m?2 y?1. An extreme rate of 13351 g m?2 y?1 is observed on a station in the Skagerrak. Sedimentation rates significantly increase with depth indicating that the Skagerrak and northern parts of the Kattegat as well as the deep basins in the Baltic Sea act as depocentres for fine-grained sediments. Apparently, sedimentation rates have increased in recent years.  相似文献   
26.
A field experiment was conducted to investigate how water-based drill cuttings and sediment type influence colonization of soft bottom communities. Bottom frames with trays containing defaunated sediments were placed at the seabed for 6 months to study colonization of macrofauna. Two different sediments (coarse and fine) were used, and 6 or 24 mm layer of water-based drill cuttings were added on top of these sediments. Some of the sediments were controls with no additions. In the end of the experiment, the oxygen availability in sediment porewater and macrofaunal abundance were reduced in treatments with 24 mm drill cuttings compared to controls. Tube-building annelids were particularly sensitive to drill cuttings. However, these responses were only minor, and notably, the drill cuttings initiated a weaker faunal response than sediment type and site of the bottom frame. Sediments capped with water-based drill cuttings thus showed a rapid colonization of macrofaunal communities.  相似文献   
27.
Mafic complexes in the central Sierra Nevada batholith record valuable geochemical information regarding the role mafic magmas play in arc magmatism and the generation of continental crust. In the intrusive suite of Yosemite Valley, major and trace element compositions of the hornblende-bearing gabbroic rocks from the Rockslides mafic complex and of the mafic dikes in the North America Wall are compositionally similar to high-alumina basalt. Of these rocks, two samples have higher Ni and Cr abundances as well as higher εNd values than previously recognized for the intrusive suite. Plagioclase crystals in rocks from the North America Wall and the Rockslides have prominent calcic cores and sharply defined sodic rims, a texture commonly associated with mixing of mafic and felsic magmas. In situ analyses of 87Sr/86Sr in plagioclase show no significant isotopic difference from the cores to the rims of these grains. We propose that the high 87Sr/86Sr (~0.7067) and low εNd (~?3.4) of bulk rocks, the homogeneity of 87Sr/86Sr in plagioclase, and the high δ18O values of bulk rocks (6.6–7.3 ‰) and zircon (Lackey et al. in J Petrol 49:1397–1426, 2008) demonstrate that continental crust was assimilated into the sublithospheric mantle-derived basaltic precursors of the mafic rocks in Yosemite Valley. Contamination (20–40 %) likely occurred in the lower crust as the magma differentiated to high-alumina basalt prior to plagioclase (and zircon) crystallization. As a consequence, the isotopic signatures recorded by whole rocks, plagioclase, and zircon do not represent the composition of the underlying lithospheric mantle. We conclude that the mafic and associated felsic members of the intrusive suite of Yosemite Valley represent 60–80 % new additions to the crust and include significant quantities of recycled ancient crust.  相似文献   
28.
Unusual monotonous intermediate ignimbrites consist of phenocryst-rich dacite that occurs as very large volume (>1000 km3) deposits that lack systematic compositional zonation, comagmatic rhyolite precursors, and underlying plinian beds. They are distinct from countless, usually smaller volume, zoned rhyolite–dacite–andesite deposits that are conventionally believed to have erupted from magma chambers in which thermal and compositional gradients were established because of sidewall crystallization and associated convective fractionation. Despite their great volume, or because of it, monotonous intermediates have received little attention. Documentation of the stratigraphy, composition, and geologic setting of the Lund Tuff – one of four monotonous intermediate tuffs in the middle-Tertiary Great Basin ignimbrite province – provides insight into its unusual origin and, by implication, the origin of other similar monotonous intermediates.The Lund Tuff is a single cooling unit with normal magnetic polarity whose volume likely exceeded 3000 km3. It was emplaced 29.02±0.04 Ma in and around the coeval White Rock caldera which has an unextended north–south diameter of about 50 km. The tuff is monotonous in that its phenocryst assemblage is virtually uniform throughout the deposit: plagioclase>quartz≈hornblende>biotite>Fe–Ti oxides≈sanidine>titanite, zircon, and apatite. However, ratios of phenocrysts vary by as much as an order of magnitude in a manner consistent with progressive crystallization in the pre-eruption chamber. A significant range in whole-rock chemical composition (e.g., 63–71 wt% SiO2) is poorly correlated with phenocryst abundance.These compositional attributes cannot have been caused wholly by winnowing of glass from phenocrysts during eruption, as has been suggested for the monotonous intermediate Fish Canyon Tuff. Pumice fragments are also crystal-rich, and chemically and mineralogically indistinguishable from bulk tuff. We postulate that convective mixing in a sill-like magma chamber precluded development of a zoned chamber with a rhyolitic top or of a zoned pyroclastic deposit. Chemical variations in the Lund Tuff are consistent with equilibrium crystallization of a parental dacitic magma followed by eruptive mixing of compositionally diverse crystals and high-silica rhyolite vitroclasts during evacuation and emplacement. This model contrasts with the more systematic withdrawal from a bottle-shaped chamber in which sidewall crystallization creates a marked vertical compositional gradient and a substantial volume of capping-evolved rhyolite magma. Eruption at exceptionally high discharge rates precluded development of an underlying plinian deposit.The generation of the monotonous intermediate Lund magma and others like it in the middle Tertiary of the western USA reflects an unusually high flux of mantle-derived mafic magma into unusually thick and warm crust above a subducting slab of oceanic lithosphere.  相似文献   
29.
Recent Results from Studies of Electric Discharges in the Mesosphere   总被引:3,自引:3,他引:0  
The paper reviews recent advances in studies of electric discharges in the stratosphere and mesosphere above thunderstorms, and their effects on the atmosphere. The primary focus is on the sprite discharge occurring in the mesosphere, which is the most commonly observed high altitude discharge by imaging cameras from the ground, but effects on the upper atmosphere by electromagnetic radiation from lightning are also considered. During the past few years, co-ordinated observations over Southern Europe have been made of a wide range of parameters related to sprites and their causative thunderstorms. Observations have been complemented by the modelling of processes ranging from the electric discharge to perturbations of trace gas concentrations in the upper atmosphere. Observations point to significant energy deposition by sprites in the neutral atmosphere as observed by infrasound waves detected at up to 1000 km distance, whereas elves and lightning have been shown significantly to affect ionization and heating of the lower ionosphere/mesosphere. Studies of the thunderstorm systems powering high altitude discharges show the important role of intracloud (IC) lightning in sprite generation as seen by the first simultaneous observations of IC activity, sprite activity and broadband, electromagnetic radiation in the VLF range. Simulations of sprite ignition suggest that, under certain conditions, energetic electrons in the runaway regime are generated in streamer discharges. Such electrons may be the source of X- and Gamma-rays observed in lightning, thunderstorms and the so-called Terrestrial Gamma-ray Flashes (TGFs) observed from space over thunderstorm regions. Model estimates of sprite perturbations to the global atmospheric electric circuit, trace gas concentrations and atmospheric dynamics suggest significant local perturbations, and possibly significant meso-scale effects, but negligible global effects.  相似文献   
30.
Two fundamentally different types of silicic volcanic rocks formed during the Cenozoic of the western Cordillera of the United States. Large volumes of dacite and rhyolite, mostly ignimbrites, erupted in the Oligocene in what is now the Great Basin and contrast with rhyolites erupted along the Snake River Plain during the Late Cenozoic. The Great Basin dacites and rhyolites are generally calc-alkaline, magnesian, oxidized, wet, cool (<850°C), Sr-and Al-rich, and Fe-poor. These silicic rocks are interpreted to have been derived from mafic parent magmas generated by dehydration of oceanic lithosphere and melting in the mantle wedge above a subduction zone. Plagioclase fractionation was minimized by the high water fugacity and oxide precipitation was enhanced by high oxygen fugacity. This resulted in the formation of Si-, Al-, and Sr-rich differentiates with low Fe/Mg ratios, relatively low temperatures, and declining densities. Magma mixing, large proportions of crustal assimilation, and polybaric crystal fractionation were all important processes in generating this Oligocene suite. In contrast, most of the rhyolites of the Snake River Plain are alkaline to calc-alkaline, ferroan, reduced, dry, hot (830–1,050°C), Sr-and Al-poor, and Nb-and Fe-rich. They are part of a distinctly bimodal sequence with tholeiitic basalt. These characteristics were largely imposed by their derivation from parental basalt (with low fH2O and low fO2) which formed by partial melting in or above a mantle plume. The differences in intensive parameters caused early precipitation of plagioclase and retarded crystallization of Fe–Ti oxides. Fractionation led to higher density magmas and mid-crustal entrapment. Renewed intrusion of mafic magma caused partial melting of the intrusive complex. Varying degrees of partial melting, fractionation, and minor assimilation of older crust led to the array of rhyolite compositions. Only very small volumes of distinctive rhyolite were derived by fractional crystallization of Fe-rich intermediate magmas like those of the Craters of the Moon-Cedar Butte trend. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号