首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
大气科学   16篇
地球物理   2篇
地质学   3篇
海洋学   4篇
天文学   1篇
  2022年   1篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2013年   2篇
  2012年   1篇
  2009年   1篇
  2007年   1篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1995年   2篇
  1993年   1篇
  1988年   1篇
  1987年   1篇
  1982年   1篇
  1981年   1篇
  1976年   1篇
  1975年   1篇
  1973年   3篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
11.
12.
Abstract

To provide useful precipitation measurements from space, two requirements must be met: adequate spatial and temporal sampling of the storm and sufficient accuracy in the estimate of precipitation intensity. Although presently no single instrument or method completely satisfies both requirements, the visible/IR, microwave radiometer and radar methods can be used in a readepiction, manner. Visible/IR instruments provide good temporal sampling and rain area depiction, but recourse must be made to microwave measurements for quantitative rainfall estimates. The inadequacy of microwave radiometric measurements over land suggests, in turn, the use of radar. Several recently developed attenuating‐wavelength radar methods are discussed in terms of their accuracy, dynamic range and system implementation. Traditionally, the requirements of high resolution and adequate dynamic range have led to fairly costly and complex radar systems. Some simplifications and cost reduction can be made, however, by using K‐band wavelengths, which have the advantages of greater sensitivity at low rain rates and higher resolution capabilities. Several recently proposed methods of this kind are reviewed in terms of accuracy and system implementation. Finally, an adaptive‐pointing multi‐sensor instrument is described that would exploit certain advantages of the IR, radiometric and radar methods.  相似文献   
13.
Local ozone production and loss rates for the arctic free troposphere (58–85° N, 1–6 km, February–May) during the TroposphericOzone Production about the Spring Equinox (TOPSE) campaign were calculated using a constrained photochemical box model. Estimates were made to assess the importance of local photochemical ozone production relative to transport in accounting for the springtime maximum in arctic free tropospheric ozone. Ozone production and loss rates from our diel steady-state box model constrained by median observations were first compared to two point box models, one run to instantaneous steady-state and the other run to diel steady-state. A consistent picture of local ozone photochemistry was derived by all three box models suggesting that differences between the approaches were not critical. Our model-derived ozone production rates increased by a factor of 28 in the 1–3 km layer and a factor of 7 in the 3–6 kmlayer between February and May. The arctic ozone budget required net import of ozone into the arctic free troposphere throughout the campaign; however, the transport term exceeded the photochemical production only in the lower free troposphere (1–3 km) between February and March. Gross ozone production rates were calculated to increase linearly with NOx mixing ratiosup to 300 pptv in February and for NOx mixing ratios up to 500 pptv in May. These NOx limits are an order of magnitude higher thanmedian NOx levels observed, illustrating the strong dependence ofgross ozone production rates on NOx mixing ratios for the majority of theobservations. The threshold NOx mixing ratio needed for netpositive ozone production was also calculated to increase from NOx 10pptv in February to 25 pptv in May, suggesting that the NOx levels needed to sustain net ozone production are lower in winter than spring. This lower NOx threshold explains how wintertime photochemical ozone production can impact the build-up of ozone over winter and early spring. There is also an altitude dependence as the threshold NOx neededto produce net ozone shifts to higher values at lower altitudes. This partly explains the calculation of net ozone destruction for the 1–3 km layerand net ozone production for the 3–6 km layer throughout the campaign.  相似文献   
14.
Association constants of orthophosphate ion with Na+, Ca2+, and Mg2+ were measured at μ = 0.68 and 20°C. The results were used to calculate phosphate speciation in seawater. Free HPO42? ion and MgHPO4o are found to be the predominant species.  相似文献   
15.
The amount of hydrogen ion exchange on the surface of amorphous silica in seawater was measured as a function of pH at 2 and 25°C. Hydrogen ion exchange with the cations present in seawater is pH dependent and at 25°C the fraction of the surface in the cation form increases from 9% at pH 7 to 22% at pH 8. The exchange is temperature dependent and at 2°C and pH 8, 14% of the exchange sites are occupied by cations, as opposed to 22% of the exchange sites at 25°C. These results were used to calculate the buffer capacity of a model sediment consisting of pore water and amorphous silica. For a sediment of 70% porosity, pH 7.7, and 25°C, the buffer capacity of sediment plus pore water is 67 times the buffer capacity of pure seawater.  相似文献   
16.
Petroleum biodegradation and oil spill bioremediation   总被引:27,自引:0,他引:27  
Hydrocarbon-utilizing microorganisms are ubiquitously distributed in the marine environment following oil spills. These microorganisms naturally biodegrade numerous contaminating petroleum hydrocarbons, thereby cleansing the oceans of oil pollutants. Bioremediation, which is accomplished by adding exogenous microbial populations or stimulating indigenous ones, attempts to raise the rates of degradation found naturally to significantly higher rates. Seeding with oil degraders has not been demonstrated to be effective, but addition of nitrogenous fertilizers has been shown to increase rates of petroleum biodegradation. In the case of the Exxon Valdez spill, the largest and most thoroughly studied application of bioremediation, the application of fertilizer (slow release or oleophilic) increased rates of biodegradation 3–5 times. Because of the patchiness of oil, an internally conserved compound, hopane, was critical for demonstrating the efficacy of bioremediation. Multiple regression models showed that the effectiveness of bioremediation depended upon the amount of nitrogen delivered, the concentration of oil, and time.  相似文献   
17.
18.
Measurements of NOx (NO +NO2) and the sum of reactive nitrogenconstituents, NOy, were made near the surface atAlert (82.5°N), Canada during March and April1998. In early March when solar insolation was absentor very low, NOx mixing ratios were frequentlynear zero. After polar sunrise when the sun was abovethe horizon for much or all of the day a diurnalvariation in NOx and NOy was observed withamplitudes as large as 30–40 pptv. The source ofactive nitrogen is attributed to release from the snowsurface by a process that is apparently sensitized bysunlight. If the source from the snowpack is a largescale feature of the Arctic then the diurnal trendsalso require a competing process for removal to thesurface. From the diurnal change in the NO/NO2ratio, mid-April mixing ratios for the sum of peroxyand halogen oxide radicals of 10 pptv werederived for periods when ozone mixing ratios were inthe normal range of 30–50 ppbv. Mid-day ozoneproduction and loss rates with the active nitrogensource were estimated to be 1–2 ppbv/day and in nearbalance. NOy mixing ratios which averaged only295±66 pptv do not support a large accumulation inthe high Arctic surface layer in the winter and springof 1998. The small abundance of NOy relative tothe elevated mixing ratios of other long-livedanthropogenic constituents requires that reactivenitrogen be removed to the surface during transport toor during residence within the high Arctic.  相似文献   
19.
Surface observations of several nitrogen oxides in the Canadian high Arctic during the period March-April 1988 are reported. These include data on NO2, the inorganic nitrates HNO3 and particulate nitrate, and the organic nitrates PAN and C3–C7 alkyl-nitrates. It is found that the organic nitrates make up 70–80% of the sum of the measured nitrogen oxides. Based on concurrently measured sulphur oxides, the period of observation was divided into two halves with the first half representing less polluted, more aged air than the second. The preponderance of the organic nitrates was less in the first period than the second. In contrast, there was little difference in the inorganic nitrates and NO2 concentrations. The dominant inorganic nitrate shifted from particulate nitrate in the first period towards gaseous HNO3 in the second. No correlation between the nitrates (inorganic or organic) and O3 was observed; although some indication of a positive correlation between NO2 and O3 has been reported earlier (Bottenheimet al., 1990). Possible explanations for these observations are proposed. A survey of other potential nitrogen oxides that may be present in the Arctic air but not measured in these experiments suggests that the nitrogen oxides not measured here constitute a minor fraction of the total reactive nitrogen (NO y ).Paper submitted to the 7th International Symposium of the Commission for Atmospheric Chemistry and Global Pollution on the Chemistry of the Global Atmosphere held in Chamrousse, France, from 5 to 11 September 1990.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号