首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   14篇
  国内免费   1篇
测绘学   5篇
大气科学   5篇
地球物理   43篇
地质学   79篇
海洋学   16篇
天文学   28篇
自然地理   10篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   5篇
  2018年   9篇
  2017年   9篇
  2016年   8篇
  2015年   10篇
  2014年   13篇
  2013年   18篇
  2012年   15篇
  2011年   7篇
  2010年   12篇
  2009年   8篇
  2008年   16篇
  2007年   6篇
  2006年   2篇
  2005年   8篇
  2004年   7篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   5篇
  1999年   3篇
  1998年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有186条查询结果,搜索用时 15 毫秒
181.
Abstract

Different approaches used in hydrological modelling are compared in terms of the way each one takes the rainfall data into account. We examine the errors associated with accounting for rainfall variability, whether in hydrological modelling (distributed vs lumped models) or in computing catchment rainfall, as well as the impact of each approach on the representativeness of the parameters it uses. The database consists of 1859 rainfall events, distributed on 500 basins, located in the southeast of France with areas ranging from 6.2 to 2851 km2. The study uses as reference the hydrographs computed by a distributed hydrological model from radar rainfall. This allows us to compare and to test the effects of various simplifications to the process when taking rainfall information (complete rain field vs sampled rainfall) and rainfall–runoff modelling (lumped vs distributed) into account. The results appear to show that, in general, the sampling effect can lead to errors in discharge at the outlet that are as great as, or even greater than, those one would get with a fully lumped approach. We found that small catchments are more sensitive to the uncertainties in catchment rainfall input generated by sampling rainfall data as seen through a raingauge network. Conversely, the larger catchments are more sensitive to uncertainties generated when the spatial variability of rainfall events is not taken into account. These uncertainties can be compensated for relatively easily by recalibrating the parameters of the hydrological model, although such recalibrations cause the parameter in question to completely lose physical meaning.

Citation Arnaud, P., Lavabre, J., Fouchier, C., Diss, S. & Javelle, P. (2011) Sensitivity of hydrological models to uncertainty of rainfall input. Hydrol. Sci. J. 56(3), 397–410.  相似文献   
182.
We studied sediment cores from Lake Vens (2,327 m asl), in the Tinée Valley of the SW Alps, to test the paleoseismic archive potential of the lake sediments in this particularly earthquake-sensitive area. The historical earthquake catalogue shows that moderate to strong earthquakes, with intensities of IX–X, have impacted the Southern Alps during the last millennium. Sedimentological (X-ray images, grain size distribution) and geochemical (major elements and organic matter) analyses show that Lake Vens sediments consist of a terrigenous, silty material (minerals and organic matter) sourced from the watershed and diatom frustules. A combination of X-ray images, grain-size distribution, major elements and magnetic properties shows the presence of six homogenite-type deposits interbedded in the sedimentary background. These sedimentological features are ascribed to sediment reworking and grain sorting caused by earthquake-generated seiches. The presence of microfaults that cross-cut the sediment supports the hypothesis of seismic deposits in this system. A preliminary sediment chronology is provided by 210Pb measurement and AMS 14C ages. According to the chronology, the most recent homogenite events are attributable to damaging historic earthquakes in AD 1887 (Ligure) and 1564 (Roquebillière). Hence, the Lake Vens sediment recorded large-magnitude earthquakes in the region and permits a preliminary estimate of recurrence time for such events of ~400 years.  相似文献   
183.
Chemical mass balance of calcrete genesis on the Toledo granite (Spain)   总被引:2,自引:0,他引:2  
The chemical mass balance of calcrete genesis is studied on a typical sequence developed in granite, in the Toledo mountains, Central Spain.

Field evidence and petrographic observations indicate that the texture and the bulk volume of the parent rock are strictly preserved all along the studied calcrete profile.

Microscopic observations indicate that the calcitization process starts within the saprolite, superimposed on the usual mechanisms of granite weathering: the fresh rock is first weathered to secondary clays, mainly smectites, which are then pseudomorphically replaced by calcite. Based on this evidence, chemical mass transfers are calculated, assuming iso-volume transformation from the parent rock to the calcrete.

The mass balance results show the increasing loss of matter due to weathering of the primary phases, from the saprolite towards the calcrete layers higher in the sequence. Zr, Ti or Th, which are classically considered as immobile during weathering, are also depleted along the profile, especially in the calcrete layer. This results from the prevailing highly alkaline conditions, which could account for the simultaneous precipitation of CaCO3 and silicate dissolution.

The calculated budget suggests that the elements exported from the weathering profile are provided dominantly by the weathering of plagioclase and biotite. We calculate that 8–42% of the original Ca remains in granitic relics, while only 15% of the authigenic Ca released by weathering is reincorporated in the calcite. This suggests that 373 kg/m2 of calcium (i.e., three times the original amount) is imported into the calcrete from allochtonous sources, probably due to aeolian transport from distant limestone formations.  相似文献   

184.
Tidal sand dune dynamics is observed for two tidal cycles in the Arcachon tidal inlet, southwest France. An array of instruments is deployed to measure bathymetric and current variations along dune profiles. Based on the measurements, dune crest horizontal and vertical displacements are quantified and show important dynamics in phase with tidal currents. We observed superimposed ripples on the dune stoss side and front, migrating and changing polarity as tidal currents reverse. A 2D RANS numerical model is used to simulate the morphodynamic evolution of a flat non-cohesive sand bed submitted to a tidal current. The model reproduces the bed evolution until a field of sand bedforms is obtained that are comparable with observed superimposed ripples in terms of geometrical dimensions and dynamics. The model is then applied to simulate the dynamics of a field of large sand dunes of similar size as the dunes observed in situ. In both cases, simulation results compare well with measurements qualitatively and quantitatively. This research allows for a better understanding of tidal sand dune and superimposed ripple morphodynamics and opens new perspectives for the use of numerical models to predict their evolution.  相似文献   
185.
The study investigates the mechanism of glacial meltwater recharge under the Fennosciandian Ice Sheet during the last glacial maximum (LGM) and its impact on regional groundwater flow in the northern Baltic Artesian Basin (BAB) in Estonia and Latvia. The current hypothesis is that a flow reversal occurred in the BAB due to subglacial recharge during the LGM. This hypothesis is supported by an extensive dataset of geochemical and isotopic measurements in the groundwater of northern Estonia, exhibiting significant depletion in δ18O with respect to modern precipitation. To verify the consistency of this hypothesis and better understand groundwater flow dynamics during the LGM period, a numerical model is developed for this area. Two cross-sectional models have been created across the northern BAB, in which groundwater flow and the transport of δ18O have been simulated from the beginning of the LGM to present-day. Several simulations were performed with different subglacial boundary conditions, to investigate the uncertainty related to subglacial recharge of meltwater during the LGM and the subsequent flow reversal in the northern BAB. Several simulations provide a satisfying fit between computed and observed values of δ18O, which means that the hypothesis of subglacial recharge of meltwater is consistent with δ18O distribution. The numerical model suggests that preservation of meltwater in northern Estonia is controlled by confining layers and the proximity to the outcrop area of aquifers, located in the Gulf of Finland. The results also suggest that glacial meltwater has been preserved under the Baltic Sea in the Gulf of Riga.  相似文献   
186.
The Northern Humboldt Current system (NHCS) produces more fish per unit area than any other region in the world. Although the system produces enough macrozooplankton to sustain its high production of forage fish, the paucity of information on macrozooplankton hampers research into the system. In this study, we estimated the biomass of the epipelagic crustacean macrozooplankton from the NHCS during both austral summer and spring 2005. To do this, we developed a bi-frequency acoustic method and extracted high-resolution information on the biomass and the patterns of distribution of crustacean macrozooplankton, fish and other marine compartments. We found that, although macrozooplankton comprises a number of distinct organisms, the euphausiids were the zooplankton group that better fitted the patterns from independent net sampling zooplankton data. Also, the similarities between the nocturnal patterns of size and biomass macrozooplankton distribution from this study and the known patterns of euphausiids, in particular Euphausia mucronata, suggest that euphausiids were the main constituent of the estimated nocturnal acoustic macrozooplankton biomass even if other organisms such as large copepods may have contributed considerably to the macrozooplankton biomass. The total macrozooplankton biomass was estimated to about 105 g m−2, i.e., two to five times more than previous estimates. This direct biomass estimation of macrozooplankton is in agreement with the new findings in trophic ecology indicating that forage fish consume mainly macrozooplankton. This high biomass also supports the current hypotheses explaining the NHCS high fish production. Using the method, we are able to revisit present-day and historical acoustic databases and extract high-resolution data on macrozooplankton, a key ecological compartment of the ecosystem. Since zooplankton is the link between the physically driven primary producers and the biologically driven tertiary consumers, this information is essential to achieve a mechanistic understanding of the system, from physics to top predators.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号