首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   18篇
  国内免费   1篇
测绘学   5篇
大气科学   5篇
地球物理   43篇
地质学   79篇
海洋学   16篇
天文学   28篇
自然地理   10篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   5篇
  2018年   9篇
  2017年   9篇
  2016年   8篇
  2015年   10篇
  2014年   13篇
  2013年   18篇
  2012年   15篇
  2011年   7篇
  2010年   12篇
  2009年   8篇
  2008年   16篇
  2007年   6篇
  2006年   2篇
  2005年   8篇
  2004年   7篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   5篇
  1999年   3篇
  1998年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有186条查询结果,搜索用时 234 毫秒
11.
Active, carbonate‐mineralizing microbial mats flourish in a tropical, highly evaporative, marine‐fed lagoonal network to the south of Cayo Coco Island (Cuba). Hypersaline conditions support the development of a complex sedimentary microbial ecosystem with diverse morphologies, a variable intensity of mineralization and a potential for preservation. In this study, the role of intrinsic (i.e. microbial) and extrinsic (i.e. physicochemical) controls on microbial mat development, mineralization and preservation was investigated. The network consists of lagoons, forming in the interdune depressions of a Pleistocene aeolian substratum; they developed due to a progressive increase in sea‐level since the Holocene. The hydrological budget in the Cayo Coco lagoonal network changes from west to east, increasing the salinity. This change progressively excludes grazers and increases the saturation index of carbonate minerals, favouring the development and mineralization of microbial mats in the easternmost lagoons. Detailed mapping of the easternmost lagoon shows four zones with different flooding regimes. The microbial activity in the mats was recorded using light–dark shifts in conjunction with microelectrode O2 and HS? profiles. High rates of O2 production and consumption, in addition to substantial amounts of exopolymeric substances, are indicative of a potentially strong intrinsic control on mineralization. Seasonal, climate‐driven water fluctuations are key for mat development, mineralization, morphology and distribution. Microbial mats show no mineralization in the permanently submersed zone, and moderate mineralization in zones with alternating immersion and exposure. It is suggested that mineralization is also driven by water‐level fluctuations and evaporation. Mineralized mats are laminated and consist of alternating trapping and binding of grains and microbially induced magnesium calcite and dolomite precipitation. The macrofabrics of the mats evolve from early colonizing Flat mats to complex Cerebroid or Terrace structures. The macrofabrics are influenced by the hydrodynamic regime: wind‐driven waves inducing relief terraces in windward areas and flat morphologies on the leeward side of the lagoon. Other external drivers include: (i) storm events that either promote (for example, by bioclasts covering) or prevent (for example, by causing erosion) microbial mat preservation; and (ii) subsurface degassing, through mangrove roots and desiccation cracks covered by Flat mats (i.e. forming Hemispheroids and Cerebroidal structures). These findings provide in‐depth insights into understanding fossil microbialite morphologies that formed in lagoonal settings.  相似文献   
12.

Earthquakes cluster in space and time resulting in nonlinear damage effects. We compute earthquake interactions using the Coulomb stress transfer theory and dynamic vulnerability from the concept of ductility capacity reduction. We combine both processes in the generic multi-risk framework where risk scenarios are simulated using a variant of the Markov chain Monte Carlo method. We apply the proposed approach to the thrust fault system of northern Italy, considering earthquakes with characteristic magnitudes in the range ~[6, 6.5], different levels of tectonic loading \(\dot{\tau }\) = {10−4, 10−3, 10−2} bar/year and a generic stock of fictitious low-rise buildings with different ductility capacities μ Δ = {2, 4, 6}. We describe the process’ stochasticity by non-stationary Poisson earthquake probabilities and by binomial damage state probabilities. We find that earthquake clustering yields a tail fattening of the seismic risk curve, the effect of which is amplified by damage-dependent fragility due to clustering. The impact of clustering alone is in average more important than dynamic vulnerability, the spatial extent of the former phenomenon being greater than of the latter one.

  相似文献   
13.
Corner-point gridding is widely used in reservoir and basin modeling but generally yields approximations in the representation of geological interfaces. This paper introduces an indirect method to generate a hex-dominant mesh conformal to 3D geological surfaces and well paths suitable for finite-element and control-volume finite-element simulations. By indirect, we mean that the method first generates an unstructured tetrahedral mesh whose tetrahedra are then merged into primitives (hexahedra, prisms, and pyramids). More specifically, we focus on determining the optimal set of primitives that can be recombined from a given tetrahedral mesh. First, we detect in the tetrahedral mesh all the feasible volumetric primitives using a pattern-matching algorithm (Meshkat and Talmor Int. J. Numer. Meth. Eng. 49(1-2), 17–30 2000) that we re-visit and extend with configurations that account for degenerated tetrahedra (slivers). Then, we observe that selecting the optimal set of primitives among the feasible ones can be formalized as a maximum weighted independent set problem (Bomze et al. 1999), known to be \(\mathcal {N}\mathcal {P}\)-Complete. We propose several heuristic optimizations to find a reasonable set of primitives in a practical time. All the tetrahedra of each selected primitive are then merged to build the final unstructured hex-dominant mesh. This method is demonstrated on 3D geological models including a faulted and folded model and a discrete fracture network.  相似文献   
14.
Zircon (U‐Th‐Sm)/He (ZHe) thermochronometry is a powerful tool that has been widely used in geology to constrain the exhumation histories of orogens. In this study, we present an alternative protocol for dissolving zircon grains for determination of parent nuclides. This new alkali fusion procedure developed at the SARM (Service d'Analyse des Roches et des Minéraux) in Nancy, France, is fast (requiring only 2 d, including cleaning steps) and offers several advantages over conventional methods by avoiding: (i) use of HF pressure dissolution and (ii) complete removing of grains from the metal microvials. After dissolution, U, Th and Sm were measured using an ICP‐MS. We tested the new procedure on two different ZHe reference materials, the Fish Canyon Tuff and Buluk Tuff; these provided precision values for ZHe‐age estimations of 9 and 6% (1s), respectively. In addition, using this method, zircons from the Buluk Tuff are shown to be chemically more homogenous and more suitable for assessing the uncertainty of the entire integrated procedure.  相似文献   
15.
Landslide susceptibility modelling—a crucial step towards the assessment of landslide hazard and risk—has hitherto not included the local, transient effects of previous landslides on susceptibility. In this contribution, we implement such transient effects, which we term “landslide path dependency”, for the first time. Two landslide path dependency variables are used to characterise transient effects: a variable reflecting how likely it is that an earlier landslide will have a follow-up landslide and a variable reflecting the decay of transient effects over time. These two landslide path dependency variables are considered in addition to a large set of conditioning attributes conventionally used in landslide susceptibility. Three logistic regression models were trained and tested fitted to landslide occurrence data from a multi-temporal landslide inventory: (1) a model with only conventional variables, (2) a model with conventional plus landslide path dependency variables, and (3) a model with only landslide path dependency variables. We compare the model performances, differences in the number, coefficient and significance of the selected variables, and the differences in the resulting susceptibility maps. Although the landslide path dependency variables are highly significant and have impacts on the importance of other variables, the performance of the models and the susceptibility maps do not substantially differ between conventional and conventional plus path dependent models. The path dependent landslide susceptibility model, with only two explanatory variables, has lower model performance, and differently patterned susceptibility map than the two other models. A simple landslide susceptibility model using only DEM-derived variables and landslide path dependency variables performs better than the path dependent landslide susceptibility model, and almost as well as the model with conventional plus landslide path dependency variables—while avoiding the need for hard-to-measure variables such as land use or lithology. Although the predictive power of landslide path dependency variables is lower than those of the most important conventional variables, our findings provide a clear incentive to further explore landslide path dependency effects and their potential role in landslide susceptibility modelling.  相似文献   
16.
A high‐resolution sedimentological and geochemical study of a high‐altitude proglacial lake (Lake Blanc, Aiguilles Rouges, 2352 m a.s.l.) revealed 195 turbidites, 190 of which are related to flood events over the last 1400 years. We used the coarsest sediment fraction of each turbidite as a proxy for the intensity of each flood event. Because most flood events at this locality are triggered by localized summer convective precipitation events, the reconstructed sedimentary record reveals changes in the frequency and intensity of such events over the last millennium. Comparisons with other temperature, palaeohydrological and glacier reconstructions in the region suggest that the most intense events occurred during the warmest periods, i.e. during the Medieval Climate Anomaly (AD 800–1300) and the current period of global warming. On a multi‐decadal time scale, almost all the flood frequency peaks seem to correspond to warmer periods, whereas multi‐centennial variations in flood frequency appear to follow the regional precipitation pattern. Consequently, this new Alpine flood record provides further evidence of a link between climate warming and an increase in the frequency and intensity of flooding on a multi‐decadal time scale, whereas the centennial variability in flood frequencies is related to regional precipitation patterns. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
17.
18.
Le Groupe de Travail Européen des Grands Foraminifères présente un tableau de répartition stratigraphique de 42 espèces bien définies du Crétacé moyen de la région méditerranéenne. La répartition stratigraphique proposée pour chaque espèce est fondée soit sur des propres observations soit sur des données de la littérature supprimer et est contrôlée par la présence d'Ammonites ou de Foraminifères planctoniques.A summarizing account is presented of the deliberations of the research group for Large Foraminifers of the IGCP Project “Mid-Cretaceous Events”. Large Foraminifers are of incontestable value for dating carbonate platform sequences owing to the absence of many other diagnostic groups of organísms. A table of stratigraphical distributions for 42 species is presented.  相似文献   
19.
Groundwater warming below cities has become a major environmental issue; but the effect of distinct local anthropogenic sources of heat on urban groundwater temperature distributions is still poorly documented. Our study addressed the local effect of stormwater infiltration on the thermal regime of urban groundwater by examining differences in water temperature beneath stormwater infiltration basins (SIB) and reference sites fed exclusively by direct infiltration of rainwater at the land surface. Stormwater infiltration dramatically increased the thermal amplitude of groundwater at event and season scales. Temperature variation at the scale of rainfall events reached 3 °C and was controlled by the interaction between runoff amount and difference in temperature between stormwater and groundwater. The annual amplitude of groundwater temperature was on average nine times higher below SIB (range: 0·9–8·6 °C) than at reference sites (range: 0–1·2 °C) and increased with catchment area of SIB. Elevated summer temperature of infiltrating stormwater (up to 21 °C) decreased oxygen solubility and stimulated microbial respiration in the soil and vadose zone, thereby lowering dissolved oxygen (DO) concentration in groundwater. The net effect of infiltration on average groundwater temperature depended upon the seasonal distribution of rainfall: groundwater below large SIB warmed up (+0·4 °C) when rainfall occurred predominantly during warm seasons. The thermal effect of stormwater infiltration strongly attenuated with increasing depth below the groundwater table indicating advective heat transport was restricted to the uppermost layers of groundwater. Moreover, excessive groundwater temperature variation at event and season scales can be attenuated by reducing the size of catchment areas drained by SIB and by promoting source control drainage systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
20.
This study provides new 40Ar/39Ar geochronological constraints on the age of the Alpine tectonics in the Aspromonte Massif (southern part of the Calabrian–Peloritan belt). This massif exposes the upper units of the Calabride Complex which originated from the European continental margin. The Calabride Complex was incorporated in the Alpine orogenic wedge and then integrated into the Apennines and Maghrebides fold-and-thrust belts. Throughout the Calabride Complex there is evidence for a two stage tectonic history, which remains however rather poorly dated: Alpine nappe stacking is followed by extensional reworking along the former thrust contacts or along new detachment surfaces. Our new ages suggest that exhumation of the uppermost units, which accompanied nappe stacking, probably started at 45 Ma and that the deepest units were almost completely exhumed at 33 Ma. This kinematics probably corresponds to syn-orogenic extension while the end of exhumation is clearly related to the extensional tectonics dated at 28.6 Ma along detachment structures.Our geochronological data reveal a very short lag time between accretional and extensional processes in this part of the Mediterranean Alpine orogenic belt. The direction of extension, when the units are restored to their initial position (i.e. before the opening of the Western Mediterranean basins and the bending of the arc) is NNE–SSW. Such a direction does not fit with the eastward slab-retreat model generally put forward to explain extension in the Western Mediterranean. In contrast, we provide evidence for roughly N–S middle Oligocene extension in the accretionary prism, not previously described in this part of the Mediterranean domain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号