首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   330篇
  免费   22篇
  国内免费   3篇
测绘学   5篇
大气科学   34篇
地球物理   68篇
地质学   103篇
海洋学   54篇
天文学   41篇
综合类   3篇
自然地理   47篇
  2022年   2篇
  2021年   9篇
  2020年   5篇
  2019年   5篇
  2018年   11篇
  2017年   10篇
  2016年   14篇
  2015年   10篇
  2014年   9篇
  2013年   35篇
  2012年   19篇
  2011年   16篇
  2010年   23篇
  2009年   20篇
  2008年   12篇
  2007年   11篇
  2006年   10篇
  2005年   9篇
  2004年   8篇
  2003年   10篇
  2002年   7篇
  2001年   4篇
  2000年   5篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   8篇
  1987年   3篇
  1986年   6篇
  1984年   2篇
  1983年   5篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1966年   1篇
排序方式: 共有355条查询结果,搜索用时 15 毫秒
101.
We report isotopic ratio measurements of small SiC and Si3N4 grains, with special emphasis on presolar SiC grains of type Z, and new nucleosynthesis models for 26Al/27Al and the Ti isotopic ratios in asymptotic giant branch (AGB) stars. With the NanoSIMS we analyzed 310 SiC grains from Murchison (carbonaceous CM2 chondrite) separate KJB (diameters 0.25-0.45 μm) and 153 SiC grains from KJG (diameters 1.8-3.7 μm), 154 SiC and 23 Si3N4 grains from Indarch (enstatite EH4 chondrite) separate IH6 (diameters 0.25-0.65 μm) for their C and N isotopic compositions, 549 SiC and 142 Si3N4 grains from IH6 for their C and Si isotopic compositions, 13 SiC grains from Murchison and 66 from Indarch for their Al-Mg compositions, and eight SiC grains from Murchison and 10 from Indarch for their Ti isotopic compositions. One of the original objectives of this effort was to compare isotopic analyses with the NanoSIMS with analyses previously obtained with the Cameca IMS 3f ion microprobe. Many of the Si3N4 grains from Indarch have isotopic anomalies but most of these apparently originate from adjacent SiC grains. Only one Si3N4 grain, with 13C and 14N excesses, has a likely AGB origin. The C, N, and Si isotopic data show that the percentage of SiC grains of type Y and Z increase with decreasing grain size (from ∼1% for grains >2 μm to ∼5-7% for grains of 0.5 μm), providing an opportunity for isotopic analyses in these rare grains. Our measurements expand the number of Al-Mg analyses on SiC Z grains from 4 to 23 and the number of Ti analyses on Z grains from 2 to 11. Inferred26Al/27Al ratios of Z grains are in the range found in mainstream and Y grains and do not exceed those predicted by models of AGB nucleosynthesis. Cool bottom processing (CBP) has been invoked to explain the low 12C/13C ratios of Z grains, but this process apparently does not lead to increased 26Al production in the parent stars of these grains. This finding is in contrast to presolar oxide grains where CBP is needed to explain their high 26Al/27Al ratios. The low 46,47,49Ti/48Ti ratios found in Z grains and their correlation with low 29Si/28Si ratios extend the trend seen in mainstream grains and confirm an origin in low-metallicity AGB stars. The relatively large excesses in 30Si and 50Ti in Z grains are predicted by our models to be the result of increased production of these isotopes by neutron-capture nucleosynthesis in low-metallicity AGB stars. However, the predicted excesses in 50Ti (and 49Ti) are much larger than those found. Even lowering the strength of the 13C pocket cannot solve this discrepancy in a consistent way.  相似文献   
102.
103.
Land surface parameterization schemes play a significant role in the accuracy of meso-local scale numerical models by accounting for the exchange of energy and water between the soil and the atmosphere. The role of land surface processes during large-scale cold-pooling events was studied with two land surface schemes (LSMs) in the Advanced Research Weather Forecasting model (ARW). Model evaluation was complex due to the surface and boundary layer interactions at different temporal and spatial scales as revealed by a scale dependent variance analysis. Wavelet analysis was used for the first time to analyze the model errors with specific focus on land surface processes. The ARW model was also evaluated for the formation of a low-level jet (LLJ). It is shown that vertical resolution in the model boundary layer played a significant role in determining the characteristics of LLJ, which influenced the lower boundary layer structure and moisture distribution. The results showed that the simulated low-level jet over southern Georgia was sensitive to the land surface parameterization and led to a significant difference in the boundary layer exchange. The jet shear played a crucial role in the maintenance of turbulence and weak shear caused excessive radiative cooling leading to unrealistic cold pools in the model. The results are important for regional downscaling as the excessive cold pools that are simulated in the model can go unnoticed.  相似文献   
104.
Tidal boundary conditions in SEAWAT   总被引:3,自引:0,他引:3  
SEAWAT, a U.S. Geological Survey groundwater flow and transport code, is increasingly used to model the effects of tidal motion on coastal aquifers. Different options are available to simulate tidal boundaries but no guidelines exist nor have comparisons been made to identify the most effective approach. We test seven methods to simulate a sloping beach and a tidal flat. The ocean is represented in one of the three ways: directly using a high hydraulic conductivity (high-K) zone and indirect simulation via specified head boundaries using either the General Head Boundary (GHB) or the new Periodic Boundary Condition (PBC) package. All beach models simulate similar water fluxes across the upland boundary and across the sediment-water interface although the ratio of intertidal to subtidal flow is different at low tide. Simulating a seepage face results in larger intertidal fluxes and influences near-shore heads and salinity. Major differences in flow occur in the tidal flat simulations. Because SEAWAT does not simulate unsaturated flow the water table only rises via flow through the saturated zone. This results in delayed propagation of the rising tidal signal inland. Inundation of the tidal flat is delayed as is flow into the aquifer across the flat. This is severe in the high-K and PBC models but mild in the GHB models. Results indicate that any of the tidal boundary options are fine if the ocean-aquifer interface is steep. However, as the slope of that interface decreases, the high-K and PBC approaches perform poorly and the GHB boundary is preferable.  相似文献   
105.
对单株砂培盆栽的半木质化枝条扦插生根的一月龄人生果(Solanum muricatum Ait.)栽培品种"Xotus",每周浇两次200mL NaCl质量浓度分别为0mg·L-1和25mg·L-1的Hoagland营养液处理2个月,第二个月在控制空气CO2体积分数为(350±10)×10-6、(700±10)×10-6和(1050±10)×10-6的植物生长箱内试验。结果表明,人参果植株干物质生产量和耗水量受根际NaCl盐渍而下降,又随大气CO2升高而增加。根际NaCl盐渍能增大植株叶片蒸腾系数、根/冠比和干物质向枝干和根部分配的比例及积累量,降低根系吸收水分的效率和耗水量。升高大气CO2能促进叶片发育及干物质向地上部其他器官和地下部组织分配,增加总叶面积、比叶干重和各种器官中干物质增长量,提高干物质生产率和水分利用率。根际经25mg·L-1NaCl盐渍处理的植株,总干物质增长量和水分利用率相应下降50%~54%和24%~37%;与350×10-6CO2的处理的植株相比,700×10-6及1050×10-6CO2的处理分别使这两项指标提高到79%~106%和61%~88%以及133%~189%和99%~142%。大气CO2富集能改善受NaCl盐渍的植株干物质生产力、提高水分利用率。根际NaCl盐渍和大气CO2富集对人参果植株干物质生产和水分利用有生物互作效应。它们的共同作用会促进植株干物质的增长及叶片中合成的干物质向其他器官分配,提高干物质生产率和水分利用率,同时减少总叶面积、枝条和根系干重、根系吸水效率、植株耗水量和叶片蒸腾系数。因此,全球大气CO2富集将有利于该作物的干物质生产和水分利用。  相似文献   
106.
We investigate numerically the effect of sample volume on the effective single-phase permeability of heterolithic tidal sandstones, using three-dimensional models reconstructed directly from large rock specimens measuring 45 × 30 × 15 cm. We find that both individual and averaged effective permeability values vary as a function of sample volume, which indicates that permeability data obtained from core-plugs will not be representative at the scale of a reservoir model grid-block regardless of the number of measurements taken. However, the error introduced by averaged data may be minimized using the appropriate averaging scheme for a given facies type and flow direction.  相似文献   
107.
108.
Throughout much of Earth's history, marine carbonates have represented one of the most important geological archives of environmental change. Several pivotal events during the Phanerozoic, such as mass extinctions or hyperthermal events have recently been associated with ocean acidification. Nevertheless, well‐defined geological proxies for past ocean acidification events are, at best, scarce. Here, experimental work explores the response of bivalve shell ultrastructure and isotope geochemistry (δ13C, δ18O and δ26Mg) to stressful environments, in particular to sea water acidification. In this study, the common blue mussel, Mytilus edulis, was cultured (from early juvenile stages to one year of age) at four pH regimes (pHNBS 7·2 to pH 8·0). Shell growth rate and ultrastructure of mainly the calcitic portion of the shells were compared between experimental treatments. Specimens exposed to low‐pH environments show patches of disordered calcitic fibre orientation in otherwise well‐structured shells. Furthermore, the electron backscattered diffraction analyses reveal that, under acidified conditions, the c‐axis of the calcite prisms exhibits a bimodal or multi‐modal distribution pattern. Similar shell disorder patterns have been reported from mytilids kept under naturally acidified sea water conditions. In contrast, this study found no evidence that different pH regimes affect shell carbon, oxygen or magnesium isotope ratios. Based on these observations, it is proposed that: (i) stressful environments, in this case low sea water pH, predictably affect bivalve biomineralization patterns; and (ii) these findings bear potential as a novel (petrographic) proxy for ancient sea water acidification. An assessment of the applicability of these data to well‐preserved fossil shell material from selected time intervals requires additional work.  相似文献   
109.
110.
The intrinsic room temperature magnetic properties of pure calcite were determined from a series of natural crystals, and they were found to be highly dependent on the chemical composition. In general, dia-, para-, and ferromagnetic components contribute to the magnetic susceptibility and the anisotropy of magnetic susceptibility (AMS). With a combination of magnetic measurements and chemical analysis these three contributions were determined and related to their mineralogical sources. The intrinsic diamagnetic susceptibility of pure calcite is − 4.46 ± 0.16 × 10− 9 m3/kg (− 12.09 ± 0.5 × 10− 6 SI) and the susceptibility difference is 4.06 ± 0.03 × 10− 10 m3/kg (1.10 ± 0.01 × 10− 6 SI). These diamagnetic properties are easily dominated by other components. The paramagnetic contribution is due to paramagnetic ions in the crystal lattice that substitute for calcium; these are mainly iron and manganese. The measured paramagnetic susceptibility agrees with the values calculated from the known concentration of paramagnetic ions in the crystals according to the Curie law of paramagnetic susceptibility. Substituted iron leads to an increase in the AMS. The paramagnetic susceptibility difference was found to correlate linearly with the iron content for concentrations between 500 and 10,000 ppm. An empirical relation was determined: (k1 − k3)para (kg/m3) = Fe-content (ppm) × (1 ± 0.1) × 10− 12 (kg/m3/ppm). The maximum susceptibility difference (Δk = k1 − k3) was found to be unaffected by iron contents below 100 ppm. Ferromagnetic contributions due to inclusions of ferromagnetic minerals can dominate the susceptibility. They were detected by acquisition of isothermal remanent magnetization (IRM) and their contribution to the AMS was separated by high-field measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号