首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   608篇
  免费   40篇
  国内免费   5篇
测绘学   11篇
大气科学   42篇
地球物理   112篇
地质学   198篇
海洋学   100篇
天文学   98篇
综合类   3篇
自然地理   89篇
  2021年   11篇
  2020年   5篇
  2019年   10篇
  2018年   13篇
  2017年   16篇
  2016年   23篇
  2015年   20篇
  2014年   15篇
  2013年   54篇
  2012年   33篇
  2011年   23篇
  2010年   36篇
  2009年   30篇
  2008年   22篇
  2007年   22篇
  2006年   19篇
  2005年   16篇
  2004年   18篇
  2003年   16篇
  2002年   17篇
  2001年   8篇
  2000年   8篇
  1999年   5篇
  1998年   7篇
  1997年   10篇
  1996年   9篇
  1995年   6篇
  1994年   3篇
  1993年   7篇
  1992年   5篇
  1991年   9篇
  1990年   8篇
  1989年   7篇
  1988年   11篇
  1987年   6篇
  1986年   9篇
  1985年   6篇
  1984年   6篇
  1983年   14篇
  1982年   13篇
  1981年   6篇
  1980年   4篇
  1979年   10篇
  1978年   7篇
  1977年   5篇
  1975年   4篇
  1974年   4篇
  1972年   7篇
  1971年   9篇
  1970年   3篇
排序方式: 共有653条查询结果,搜索用时 27 毫秒
611.
Turbulence mechanisms at an agricultural site   总被引:8,自引:0,他引:8  
An extensive set of turbulence data from the 3- and 12-m heights taken over an agricultural site (Marsta, Sweden) are analyzed and compared with data from ideal sites.In unstable air, Monin-Obukhov similarity is found to be valid for the non-dimensional gradients of wind, m , temperature, h , and humidity, e , for (only a few data), for T /|T *|,/ E /|E *| and for the non-dimensionalized inertial subrange spectra of temperature and humidity. Where comparison is possible, the unstable data also agree with those found in the Kansas study, with one remarkable exception, the inertial subrange constant of the temperature spectrum, 1, being only 0.39, compared to the value 0.80 found at the Kansas site.On the stable side, most similarity predictions break down, with most of the data differing systematically from the corresponding Kansas results, the only exception being . The inertial subrange constants for temperature, 1, and for humidity, 1 are found to have the same values, 0.39 and 0.30, respectively, as they do on the unstable side. Remarkable similarity is found for the shape of the stable u- and - and e-spectra. In addition, this shape is found to be identical with that found in Kansas. The peak wavelength of the stable u-, and -spectra is found to be about four times larger than it is for the corresponding Kansas spectra. This is interpreted to be a result of the increased macro-roughness at the Marsta site as compared with that at the Kansas site. A possible explanation for the low 1-value is discussed, suggesting that 1 is not a universal constant, but instead dependent on the turbulent structure.  相似文献   
612.
Proterozoic rocks of the Cloncurry district in NW Queensland, Australia, are host to giant (tens to hundreds of square kilometers) hydrothermal systems that include (1) barren regional sodic–calcic alteration, (2) granite-hosted hydrothermal complexes with magmatic–hydrothermal transition features, and (3) iron oxide–copper–gold (IOCG) deposits. Fluid inclusion microthermometry and proton-induced X-ray emission (PIXE) show that IOCG deposits and the granite-hosted hydrothermal complexes contain abundant high temperature, ultrasaline, complex multisolid (type 1) inclusions that are less common in the regional sodic–calcic alteration. The latter is characterized by lower salinity three-phase halite-bearing (type 2) and two-phase (type 3) aqueous inclusions. Copper contents of the type 1 inclusions (>300 ppm) is higher than in type 2 and 3 inclusions (<300 ppm), and the highest copper concentrations (>1,000 ppm) are found both in the granite-hosted systems and in inclusions with Br/Cl ratios that are consistent with a magmatic source. The Br/Cl ratios of the inclusions with lower Cu contents are consistent with an evaporite-related origin. Wide ranges in salinity and homogenization temperatures for fluid inclusions in IOCG deposits and evidence for multiple fluid sources, as suggested by halogen ratios, indicate fluid mixing as an important process in IOCG genesis. The data support both leaching of Cu by voluminous nonmagmatic fluids from crustal rocks, as well as the direct exsolution of Cu-rich fluids from magmas. However, larger IOCG deposits may form from magmatic-derived fluids based on their higher Cu content.  相似文献   
613.
A series of large diameter calcite–muscovite aggregates has been prepared from calcite and muscovite powders, in order to gain a better understanding of how texture develops in impure carbonate rocks. The development of the microstructure and the crystallographic preferred orientation (CPO, texture) during the preparation process is described. The synthetic rocks have been fabricated from powders of calcite and muscovite by uniaxial cold-pressing at loads up to 400 MPa and subsequent hot isostatic pressing (HIPping) at pressures of 150 to 170 MPa and a temperature of 670 °C. The resulting textures and microstructures are homogeneous throughout the samples. The calcite CPO is generated by rigid body rotation and twinning during cold-pressing and is not significantly altered by recrystallization during HIPping. Grain growth during HIPping is observed in pure calcite samples, but is inhibited through high porosity and the presence of muscovite in the mixed aggregates. The preferred orientation of the calcite c-axes is found to increase with increasing uniaxial cold pressure, and to be independent of the muscovite content. The magnetic bulk susceptibility of the starting material has been changed by the formation of ferromagnetic impurities during fabrication. Comparison of the samples to natural calcite fabrics from fault zones show the potential of the experiments and fabric analyses presented to analyze and to better understand the deformation mechanisms of fault zones.  相似文献   
614.
615.
We completed a two‐step regional analysis of a coastal groundwater basin to (1) assess regional suitability for managed aquifer recharge (MAR), and (2) quantify the relative impact of MAR activities on groundwater levels and sea water intrusion. The first step comprised an analysis of surface and subsurface hydrologic properties and conditions, using a geographic information system (GIS). Surface and subsurface data coverages were compiled, georeferenced, reclassified, and integrated (including novel approaches for combining related datasets) to derive a spatial distribution of MAR suitability values. In the second step, results from the GIS analysis were used with a regional groundwater model to assess the hydrologic impact of potential MAR placement and operating scenarios. For the region evaluated in this study, the Pajaro Valley Groundwater Basin, California, GIS results suggest that about 7% (15 km2) of the basin may be highly suitable for MAR. Modeling suggests that simulated MAR projects placed near the coast help to reduce sea water intrusion more rapidly, but these projects also result in increased groundwater flows to the ocean. In contrast, projects placed farther inland result in more long‐term reduction in sea water intrusion and less groundwater flowing to the ocean. This work shows how combined GIS analysis and modeling can assist with regional water supply planning, including evaluation of options for enhancing groundwater resources.  相似文献   
616.
617.
Hydraulic interactions between rivers and floodplains produce off‐channel chutes, the presence of which influences the routing of water and sediment and thus the planform evolution of meandering rivers. Detailed studies of the hydrologic exchanges between channels and floodplains are usually conducted in laboratory facilities, and studies documenting chute development are generally limited to qualitative observations. In this study, we use a reconstructed, gravel‐bedded, meandering river as a field laboratory for studying these mechanisms at a realistic scale. Using an integrated field and modeling approach, we quantified the flow exchanges between the river channel and its floodplain during an overbank flood, and identified locations where flow had the capacity to erode floodplain chutes. Hydraulic measurements and modeling indicated high rates of flow exchange between the channel and floodplain, with flow rapidly decelerating as water was decanted from the channel onto the floodplain due to the frictional drag provided by substrate and vegetation. Peak shear stresses were greatest downstream of the maxima in bend curvature, along the concave bank, where terrestrial LiDAR scans indicate initial floodplain chute formation. A second chute has developed across the convex bank of a meander bend, in a location where sediment accretion, point bar development and plant colonization have created divergent flow paths between the main channel and floodplain. In both cases, the off‐channel chutes are evolving slowly during infrequent floods due to the coarse nature of the floodplain, though rapid chute formation would be more likely in finer‐grained floodplains. The controls on chute formation at these locations include the flood magnitude, river curvature, floodplain gradient, erodibility of the floodplain sediment, and the flow resistance provided by riparian vegetation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
618.
Soil carbon storage plays a key role in the global carbon cycle and is important for sustaining forest productivity. Removal of unpaved forest roads has the potential for increasing carbon storage in soils on forested terrain as treated sites revegetate and soil properties improve on the previously compacted road surfaces. We compared soil organic carbon (SOC) content at several depths on treated roads to SOC in adjacent second‐growth forests and old‐growth redwood forests in California, determined whether SOC in the upper 50 cm of soil varies with the type of road treatment, and assessed the relative importance of site‐scale and landscape‐scale variables in predicting SOC accumulation in treated road prisms and second‐growth redwood forests. Soils were sampled at 5, 20, and 50 cm depths on roads treated by two methods (decommissioning and full recontouring), and in adjacent second‐growth and old‐growth forests in north coastal California. Road treatments spanned a period of 32 years, and covered a range of geomorphic and vegetative conditions. SOC decreased with depth at all sites. Treated roads on convex sites exhibited higher SOC than on concave sites, and north aspect sites had higher SOC than south aspect sites. SOC at 5, 20, and 50 cm depths did not differ significantly between decommissioned roads (treated 18–32 years previous) and fully recontoured roads (treated 2–12 years previous). Nevertheless, stepwise multiple regression models project higher SOC developing on fully recontoured roads in the next few decades. The best predictors for SOC on treated roads and in second‐growth forest incorporated aspect, vegetation type, soil depth, lithology, distance from the ocean, years since road treatment (for the road model) and years since harvest (for the forest model). The road model explained 48% of the variation in SOC in the upper 50 cm of mineral soils and the forest model, 54%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
619.
620.
Natural groundwater recharge is inherently difficult to quantify and predict, largely because it comprises a series of processes that are spatially distributed and temporally variable. Infiltration ponds used for managed aquifer recharge (MAR) provide an opportunity to quantify recharge processes across multiple scales under semi-controlled conditions. We instrumented a 3-ha MAR infiltration pond to measure and compare infiltration patterns determined using whole-pond and point-specific methods. Whole-pond infiltration was determined by closing a transient water budget (accounting for inputs, outputs, and changes in storage), whereas point-specific infiltration rates were determined using heat as a tracer and time series analysis at eight locations in the base of the pond. Whole-pond infiltration, normalized for wetted area, rose rapidly to more than 1.0 m/d at the start of MAR operations (increasing as pond stage rose), was sustained at high rates for the next 40 d, and then decreased to less than 0.1 m/d by the end of the recharge season. Point-specific infiltration rates indicated high spatial and temporal variability, with the mean of measured values generally being lower than rates indicated by whole-pond calculations. Colocated measurements of head gradients within saturated soils below the pond were combined with infiltration rates to calculate soil hydraulic conductivity. Observations indicate a brief period of increasing saturated hydraulic conductivity, followed by a decrease of one to two orders of magnitude during the next 50 to 75 d. Locations indicating the most rapid infiltration shifted laterally during MAR operation, and we suggest that infiltration may function as a "variable source area" processes, conceptually similar to catchment runoff.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号