首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41428篇
  免费   590篇
  国内免费   319篇
测绘学   959篇
大气科学   2947篇
地球物理   8002篇
地质学   14218篇
海洋学   3849篇
天文学   9741篇
综合类   74篇
自然地理   2547篇
  2021年   404篇
  2020年   402篇
  2019年   453篇
  2018年   940篇
  2017年   843篇
  2016年   1091篇
  2015年   609篇
  2014年   1003篇
  2013年   2073篇
  2012年   1132篇
  2011年   1619篇
  2010年   1471篇
  2009年   1983篇
  2008年   1645篇
  2007年   1730篇
  2006年   1587篇
  2005年   1311篇
  2004年   1270篇
  2003年   1241篇
  2002年   1193篇
  2001年   1057篇
  2000年   980篇
  1999年   810篇
  1998年   813篇
  1997年   829篇
  1996年   668篇
  1995年   656篇
  1994年   616篇
  1993年   570篇
  1992年   526篇
  1991年   495篇
  1990年   506篇
  1989年   496篇
  1988年   474篇
  1987年   553篇
  1986年   489篇
  1985年   604篇
  1984年   650篇
  1983年   592篇
  1982年   527篇
  1981年   577篇
  1980年   469篇
  1979年   458篇
  1978年   433篇
  1977年   433篇
  1976年   383篇
  1975年   378篇
  1974年   376篇
  1973年   384篇
  1971年   224篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
201.
A connection is shown to exist between the Gaussian curvature of the associated manifold and the ergodic or non-ergodic behaviour of certain dynamical systems of astronomical and astrophysical importance.  相似文献   
202.
More than half of the C-type asteroids, the dominant type of asteroid in the outer half of the main-belt, show evidence of hydration in their reflectance spectra. In order to understand the collisional evolution of asteroids and the production of interplanetary dust and to model the infrared signature of small particles in the Solar System it is important to characterize the dust production from primary impact disruption events, and compare the disruption of hydrous and anhydrous targets. We performed a hypervelocity impact disruption experiment on an ∼30 g target of the Murchison CM2 hydrated carbonaceous chondrite meteorite, and compared the results with our previous disruption experiments on anhydrous meteorites including Allende, a CV3 carbonaceous chondrite, and nine ordinary chondrites. Murchison is significantly more friable than the ordinary chondrites or Allende. Nonetheless, on a plot of mass of the largest fragment versus specific impact energy, the Murchison disruption plots within the field of the anhydrous meteorites points, suggesting that Murchison is at least as resistant to impact disruption as the anhydrous meteorites, which require about twice the energy for disruption as terrestrial anhydrous basalt targets. We determined the mass-frequency distribution of the debris from the Murchison disruption over a nine order-of-magnitude mass range, from ∼10−9 g to the mass of the largest fragment produced in the disruption. The cumulative mass-frequency distribution from the Murchison disruption is fit by three power-law segments. For masses >10−2 g the slope is only slightly steeper than that of the corresponding segment from the disruption of most anhydrous meteorites. Over the range from ∼10−6 to 10−2 g the slope is significantly steeper than that for the anhydrous meteorites. For masses <10−6 g the slopes of both the Murchison and the anhydrous meteorites are almost flat. Thus the Murchison disruption significantly over-produced small fragments (10−6-10−3 g) compared to anhydrous meteorite targets. If the Murchison results are representative of hydrous asteroids, the hydrous asteroids may dominate over anhydrous asteroids in the production of interplanetary dust >100 μm in size, the size of micrometeorites recovered from the polar ices, while both types of asteroids might produce comparable amounts of ∼10 μm interplanetary dust. This would explain the puzzle that polar micrometeorites (>100 μm in size) are similar to hydrous meteorites, while the majority of the ∼10 μm interplanetary dust particles are anhydrous.  相似文献   
203.
In the frame of the Starburst Model, we show that the evolution of a massive stellar cluster in a high metallicity environment can reproduce the observed emission-line spectrum and the UV-optical Spectral Energy Distribution of the Seyfert 2 galaxies and LINERs. We apply the results of our models to three objects: NGC 5506, NGC 5643 and Mk 348.  相似文献   
204.
205.
Abstract— An oxide layer adjacent to the surface of the Hoba Ni-Fe meteorite was analyzed chemically and mineralogically. Maghemite, magnetite, goethite and lepidocrocite were the main Fe minerals found in the oxide layer surrounding Hoba. Most of the Ni from the unweathered original meteorite was distributed among the above minerals with spinel-type oxides (maghemite and magnetite) having the largest Ni fraction. Some Ni migrated to the limestone in which the meteorite is embedded. No evidence for zaratite or akaganeite was found in the oxide layer. Sulfate derived from the oxidation of troilite precipitated as gypsum. Phosphate accumulation in limestone in contact with the meteorite is probably due to phosphate adsorbed on Fe-oxides. Maghemite with some magnetite was the oxidation product immediately next to the meteorite metal surface, which accommodated most of the Ni and Fe from the meteorite into its structure. Upon oxidation, some of the Ni, which was incorporated into calcite, was released. Cobalt associated with the oxides stayed within the oxide structure regardless of the oxidation state and did not migrate to the limestone. This suggests that Co may be a good tracer for oxides of meteoritic origin.  相似文献   
206.
We review the results of an extensive campaign to determine the physical, geological, and dynamical properties of asteroid (101955) Bennu. This investigation provides information on the orbit, shape, mass, rotation state, radar response, photometric, spectroscopic, thermal, regolith, and environmental properties of Bennu. We combine these data with cosmochemical and dynamical models to develop a hypothetical timeline for Bennu's formation and evolution. We infer that Bennu is an ancient object that has witnessed over 4.5 Gyr of solar system history. Its chemistry and mineralogy were established within the first 10 Myr of the solar system. It likely originated as a discrete asteroid in the inner Main Belt approximately 0.7–2 Gyr ago as a fragment from the catastrophic disruption of a large (approximately 100‐km), carbonaceous asteroid. It was delivered to near‐Earth space via a combination of Yarkovsky‐induced drift and interaction with giant‐planet resonances. During its journey, YORP processes and planetary close encounters modified Bennu's spin state, potentially reshaping and resurfacing the asteroid. We also review work on Bennu's future dynamical evolution and constrain its ultimate fate. It is one of the most Potentially Hazardous Asteroids with an approximately 1‐in‐2700 chance of impacting the Earth in the late 22nd century. It will most likely end its dynamical life by falling into the Sun. The highest probability for a planetary impact is with Venus, followed by the Earth. There is a chance that Bennu will be ejected from the inner solar system after a close encounter with Jupiter. OSIRIS‐REx will return samples from the surface of this intriguing asteroid in September 2023.  相似文献   
207.
208.
Magnetohydrodynamic resonance theory is used to model the structure of the magnetospheric and ionospheric electric and magnetic fields associated with Pc5 geomagnetic pulsations. In this paper the variation of the fields across the invariant latitude of the resonance are computed. The results are combined with calculations of the variation along a field line to map the fields down to the ionosphere. In one case the results are compared with measurements obtained by the STARE auroral radar and show good agreement. The relationship between the width of the resonance region and ionospheric height-integrated Pedersen conductivity is computed and it is shown how auroral radar measurements of Pc5 oscillations could be used to determine ionospheric height-integrated Pedersen conductivity. It is pointed out that from these calculations it would be possible to identify the field line on which a satellite was located by comparing a Pc5 pulsation observed by the satellite, and the same pulsation observed by STARE.  相似文献   
209.
210.
Three‐dimensional (3D) numerical modelling of fault displacement enables the building of geological models to represent the complex 3D geometry and geological properties of faulted sedimentary basins. Using these models, cross‐fault juxtaposition relationships are predicted in 3D space and through time, based on the geometries of strata that are cut by faults. Forward modelling of fault development allows a 3D prediction of fault‐zone argillaceous smear using a 3D application of the Shale Gouge Ratio. Numerical models of the Artemis Field, Southern North Sea, UK and the Moab Fault, Utah, USA are used to demonstrate the developed techniques and compare them to traditional one‐ and two‐dimensional solutions. These examples demonstrate that a 3D analysis leads to significant improvements in the prediction of fault seal, the analysis of the interaction of the sealing properties of multiple faults, and the interpretation of fault seal within the context of sedimentary basin geometry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号