首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3340篇
  免费   145篇
  国内免费   37篇
测绘学   93篇
大气科学   368篇
地球物理   797篇
地质学   1024篇
海洋学   267篇
天文学   585篇
综合类   9篇
自然地理   379篇
  2024年   9篇
  2022年   14篇
  2021年   55篇
  2020年   65篇
  2019年   65篇
  2018年   90篇
  2017年   94篇
  2016年   117篇
  2015年   115篇
  2014年   118篇
  2013年   226篇
  2012年   138篇
  2011年   198篇
  2010年   159篇
  2009年   188篇
  2008年   165篇
  2007年   171篇
  2006年   162篇
  2005年   139篇
  2004年   116篇
  2003年   116篇
  2002年   113篇
  2001年   69篇
  2000年   86篇
  1999年   46篇
  1998年   47篇
  1997年   46篇
  1996年   43篇
  1995年   46篇
  1994年   27篇
  1993年   27篇
  1992年   23篇
  1991年   25篇
  1990年   25篇
  1989年   38篇
  1988年   14篇
  1987年   27篇
  1986年   17篇
  1985年   32篇
  1984年   27篇
  1983年   26篇
  1982年   18篇
  1981年   28篇
  1980年   16篇
  1979年   18篇
  1978年   17篇
  1977年   18篇
  1976年   11篇
  1975年   11篇
  1974年   14篇
排序方式: 共有3522条查询结果,搜索用时 15 毫秒
161.
As a part of a study of the cause of solar coronal heating, we searched for high-frequency (1 Hz) intensity oscillations in coronal loops in the [Fexiv] coronal green line. We summarize results from observations made at the 11 August 1999 total solar eclipse from Râmnicu-Vâlcea, Romania, through clear skies. We discuss the image reduction and analysis through two simultaneous series of coronal CCD images digitized at 10 Hz for a total time of about 140 s. One series of images was taken through a 3.6 Å filter isolating the 5303 Å[Fexiv] coronal green line and the other through a 100 Å filter in the nearby K-corona continuum. Previous observations, described in Pasachoff et al. (2000), showed no evidence for oscillations in the [Fexiv] green line at a level greater than 2% of coronal intensity. We describe several improvements made over the 1998 eclipse that led to increased image clarity and sensitivity. The corona was brighter in 1999 with the solar maximum, further improving the data. We use Fourier analysis to search in the [Fexiv] channel for intensity oscillations in loops at the base of the corona. Such oscillations in the 1-Hz range are predicted as a result of density fluctuations from the resonant absorption of MHD waves. The dissipation of a significant amount of mechanical energy from the photosphere into the corona through this mechanism could provide sufficient energy to heat the corona. A Monte Carlo model of the data suggests the presence of enhanced power, particularly in the 0.75–1.0 Hz range, and we conclude that MHD waves remain a viable method for coronal heating.  相似文献   
162.
We present measurements of several near-infrared emission lines from the nearby galaxy NGC 253. We have been able to measure four H2 lines across the circumnuclear starburst, from which we estimate the ortho- to para- ratio of excited H2 to be ∼2. This indicates that the bulk of the H2 emission arises from photodissociation regions (PDRs), rather than from shocks. This is the case across the entire region of active star formation.
As the H2 emission arises from PDRs, it is likely that the ratio of H2 to Brγ (the bright hydrogen recombination line) is a measure of the relative geometry of O and B stars and PDRs. Towards the nucleus of NGC 253 the geometry is deduced to be tightly clustered O and B stars in a few giant H  II regions that are encompassed by PDRs. Away from the nuclear region, the geometry becomes that of PDRs bathed in a relatively diffuse ultraviolet radiation field.
The rotation curves of 1–0 S(1) and Brγ suggest that the ionized gas is tracing a kinetic system different from that of the molecular gas in NGC 253, particularly away from the nucleus.  相似文献   
163.
Samples of marine benthic invertebrates collected from two sites in the Antarctic have been analysed for both aliphatic and aromatic hydrocarbons in order to establish baseline concentrations for some classes of hydrocarbons.Samples from Signy Island, a pristine site, contained low concentrations of the hydrocarbons determined, whereas those from King Edward Cove, South Georgia, contained significantly higher concentrations. King Edward Cove has a known history of pollution from whaling operations.Platt & Mackie (1979) have suggested that the hydrocarbons in sediments from King Edward Cove are a result of the world-wide dissemination of the pyrolysis products of fossil fuels. Our work suggests, in contrast, that the hydrocarbons in the benthos are derived from local sources.  相似文献   
164.
The quasilinear theory of acceleration of relativistic particles by hydromagnetic turbulence is treated in the adiabatic limit of small gyration radius. The theory is based on the relativistic Vlasov equation; however, a given pitch-angle scattering rate by microturbulence is postulated and is added to this equation. The resulting acceleration is found to be given by a diffusion coefficient in total momentum, which is proportional to the spectrum of turbulence with a rate coefficient . is a frequency that represents the efficiency of each wave component of the turbulence in producing acceleration. It is given as an integral over the solution of a differential equation in pitch angle. is evaluated in various limiting cases and is shown to lead to familiar forms of acceleration, such as Fermi acceleration and magnetic pumping. Thus, a comprehensive theory of these forms of heating is achieved.  相似文献   
165.
166.

The Cascadia subduction zone fault lies just off the Pacific coast of the USA and Canada. Although this fault has been seismically inactive over the written history of the Cascadia region, it has the potential to produce catastrophic earthquakes and tsunamis. A variety of dating methods have been used to show that the most recent Cascadia earthquake occurred in 1700. Among these methods is an informal analysis of oral traditions handed down by Native American peoples that appear to refer to a major earthquake in this region. A central difficulty in analyzing these narratives quantitatively is their use of a generation and other qualitative measures of time that have no fixed lengths. Here, these narratives are analyzed under an explicit statistical model of the lengths of these measures. The results raise a question about the previous conclusion that these narratives all refer to the most recent Cascadia earthquake.

  相似文献   
167.
During the latitudinal alignment in 2004, ACE and Ulysses encountered two stream interaction regions (SIRs) each Carrington rotation from 2016 to 2018, at 1 and 5.4 AU, respectively. More SIR-driven shocks were observed at 5.4 AU than at 1 AU. Three small SIRs at 1 AU merged to form a strong SIR at 5.4 AU. We compare the Enlil model results with spacecraft observations from four aspects: i) the accuracy of the latest versions of models (WSA v2.2 and Enlil v2.7) vs. old versions (WSA v1.6 and Enlil v2.6), ii) the sensitivity to different solar magnetograms (MWO vs. NSO), iii) the sensitivity to different coronal models (WSA vs. MAS), iv) the predictive capability at 1 AU vs. 5.4 AU. We find the models can capture field sector boundaries with some time offset. Although the new versions have improved the SIR timing prediction, the time offset can be up to two days at 1 AU and four days at 5.4 AU. The models cannot capture some small-scale structures, including shocks and small SIRs at 1 AU. For SIRs, the temperature and total pressure are often underestimated, while the density compression is overestimated. For slow wind, the density is usually overestimated, while the temperature, magnetic field, and total pressure are often underestimated. The new versions have improved the prediction of the speed and density, but they need more robust scaling factors for magnetic field. The Enlil model results are very sensitive to different solar magnetograms and coronal models. It is hard to determine which magnetogram-coronal model combination is superior to others. Higher-resolution solar and coronal observations, a mission closer to the Sun, together with simulations of greater resolution and added physics, are ways to make progress for the solar wind modeling.  相似文献   
168.
The mass and distance functions of free-floating planets(FFPs) would give major insights into the formation and evolution of planetary systems, including any systematic differences between those in the disk and bulge. We show that the only way to measure the mass and distance of individual FFPs over a broad range of distances is to observe them simultaneously from two observatories separated by D ~ O(0.01 au)(to measure their microlens parallax π_E) and to focus on the finite-source point-lens(FSPL) events(which yield the Einstein radius θ_E). By combining the existing KMTNet 3-telescope observatory with a 0.3 m 4 deg~2 telescope at L2, of order 130 such measurements could be made over four years, down to about M ~ 6 M_⊕for bulge FFPs and M ~ 0.7 M_⊕for disk FFPs. The same experiment would return masses and distances for many bound planetary systems. A more ambitious experiment, with two 0.5 m satellites(one at L2 and the other nearer Earth) and similar camera layout but in the infrared, could measure masses and distances of sub-Moon mass objects, and thereby probe(and distinguish between) genuine sub-Moon FFPs and sub-Moon "dwarf planets" in exo-Kuiper Belts and exo-Oort Clouds.  相似文献   
169.
Dust devils – convective vortices made visible by the dust and debris they entrain – are common in arid environments and have been observed on Earth and Mars. Martian dust devils have been identified both in images taken at the surface and in remote sensing observations from orbiting spacecraft. Observations from landing craft and orbiting instruments have allowed the dust devil translational forward motion (ground velocity) to be calculated, but it is unclear how these velocities relate to the local ambient wind conditions, for (i) only model wind speeds are generally available for Mars, and (ii) on Earth only anecdotal evidence exists that compares dust devil ground velocity with ambient wind velocity. If dust devil ground velocity can be reliably correlated to the ambient wind regime, observations of dust devils could provide a proxy for wind speed and direction measurements on Mars. Hence, dust devil ground velocities could be used to probe the circulation of the martian boundary layer and help constrain climate models or assess the safety of future landing sites.We present results from a field study of terrestrial dust devils performed in the southwest USA in which we measured dust devil horizontal velocity as a function of ambient wind velocity. We acquired stereo images of more than a 100 active dust devils and recorded multiple size and position measurements for each dust devil. We used these data to calculate dust devil translational velocity. The dust devils were within a study area bounded by 10 m high meteorology towers such that dust devil speed and direction could be correlated with the local ambient wind speed and direction measurements.Daily (10:00–16:00 local time) and 2-h averaged dust devil ground speeds correlate well with ambient wind speeds averaged over the same period. Unsurprisingly, individual measurements of dust devil ground speed match instantaneous measurements of ambient wind speed more poorly; a 20-min smoothing window applied to the ambient wind speed data improves the correlation. In general, dust devils travel 10–20% faster than ambient wind speed measured at 10 m height, suggesting that their ground speeds are representative of the boundary layer winds a few tens of meters above ground level. Dust devil ground motion direction closely matches the measured ambient wind direction.The link between ambient winds and dust devil ground velocity demonstrated here suggests that a similar one should apply on Mars. Determining the details of the martian relationship between dust devil ground velocity and ambient wind velocity might require new in situ or modelling studies but, if completed successfully, would provide a quantitative means of measuring wind velocities on Mars that would otherwise be impossible to obtain.  相似文献   
170.
Land managers responsible for invasive species removal in the USA require tools to prevent the Asian longhorned beetle (Anoplophora glabripennis) (ALB) from decimating the maple-dominant hardwood forests of Massachusetts and New England. Species distribution models (SDMs) and spread models have been applied individually to predict the invasion distribution and rate of spread, but the combination of both models can increase the accuracy of predictions of species spread over time when habitat suitability is heterogeneous across landscapes. First, a SDM was fit to 2008 ALB presence-only locations. Then, a stratified spread model was generated to measure the probability of spread due to natural and human causes. Finally, the SDM and spread models were combined to evaluate the risk of ALB spread in Central Massachusetts in 2008–2009. The SDM predicted many urban locations in Central Massachusetts as having suitable environments for species establishment. The combined model shows the greatest risk of spread and establishment in suitable locations immediately surrounding the epicentre of the ALB outbreak in Northern Worcester with lower risk areas in suitable locations only accessible through long-range dispersal from access to human transportation networks. The risk map achieved an accuracy of 67% using 2009 ALB locations for model validation. This model framework can effectively provide risk managers with valuable information concerning the timing and spatial extent of spread/establishment risk of ALB and potential strategies needed for effective future risk management efforts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号