首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2616篇
  免费   152篇
  国内免费   13篇
测绘学   219篇
大气科学   196篇
地球物理   720篇
地质学   917篇
海洋学   149篇
天文学   430篇
综合类   26篇
自然地理   124篇
  2024年   5篇
  2023年   12篇
  2022年   22篇
  2021年   47篇
  2020年   66篇
  2019年   48篇
  2018年   154篇
  2017年   122篇
  2016年   187篇
  2015年   164篇
  2014年   174篇
  2013年   212篇
  2012年   176篇
  2011年   172篇
  2010年   142篇
  2009年   143篇
  2008年   108篇
  2007年   91篇
  2006年   79篇
  2005年   52篇
  2004年   72篇
  2003年   47篇
  2002年   47篇
  2001年   51篇
  2000年   31篇
  1999年   20篇
  1998年   46篇
  1997年   28篇
  1996年   19篇
  1995年   22篇
  1994年   22篇
  1993年   12篇
  1992年   17篇
  1991年   12篇
  1990年   22篇
  1989年   12篇
  1988年   10篇
  1987年   7篇
  1985年   10篇
  1984年   4篇
  1983年   12篇
  1982年   9篇
  1981年   5篇
  1980年   10篇
  1978年   6篇
  1977年   6篇
  1975年   6篇
  1972年   9篇
  1965年   3篇
  1950年   4篇
排序方式: 共有2781条查询结果,搜索用时 180 毫秒
61.
The respiratory potential [i.e. electron transport system activity (ETSA)] of soils and sediments from five floodplain habitats (channel, gravel, islands, riparian forest and grassland) of the Urbach River, Switzerland, and actual respiration rate (R) of the same samples exposed to experimental inundation were measured. Measurements were carried out at three incubation temperatures (4°C, 12°C and 20°C), and ETSA/R ratios (i.e. exploitation of the overall metabolic capacity) were investigated to better understand the effects of temperature and inundation on floodplain functional heterogeneity. Furthermore, ETSA/R ratios obtained during experimental inundation were compared with ETSA/R ratios from field measurements to investigate the exploitation in total metabolic potential at different conditions. Lowest ETSA and R were measured in samples from channel and gravel habitats, followed by those from islands. Substantially higher values were measured in soils from riparian forest and grassland. Both ETSA and R increased with increasing temperature in samples from all habitats, while the ETSA/R ratio decreased because of a rapid response in microbial community respiration to higher temperatures. The metabolic capacity exploitation (i.e. ETSA/R) during experimental inundation was lowest in predominantly terrestrial samples (riparian forest and grassland), indicating the weakest response to wetted conditions. Comparison of experimentally inundated and field conditions revealed that in rarely flooded soils, the metabolic capacity was less exploited during inundation than during non‐flooded conditions. The results suggest high sensitivity in floodplain respiration to changes in temperature and hydrological regime. ETSA/R ratios are considered good indicators of changes in metabolic activity of floodplain soils and sediments, and thus useful to estimate the impact of changes in hydrological regime or to evaluate success of floodplain restoration actions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
62.
This study investigated the Grabia River valley mire in central Poland to reconstruct its palaeoenvironmental conditions from the Younger Dryas to the present. We analysed sedimentological, biological and geochemical data from the palaeo‐oxbow lake and valley mire to identify the principal hydrological trends, especially episodes of high water level. During the Lateglacial and Holocene, the Grabia River had a meandering channel, and its hydraulic parameters and the channel dimensions changed in response to climatic oscillations and vegetation development. We identified phases of high flood intensity and high groundwater level that correlate with regional and supraregional climatic events. The frequency and timing of palaeohydroclimatic oscillations show strong similarities to records from other sites in Poland and the rest of Europe. We show that various analytical methods, namely, pollen, plant macrofossils, Cladocera, Chironomidae, sedimentological, geochemical and radiocarbon data, can be effective tools for reconstructing past hydroclimatic changes in palaeo‐oxbow lakes and investigating the effects of past climate changes on river environments. The high sensitivity of the biota, especially Cladocera, to changes in water level permits the reconstruction of palaeoecological changes, especially flood episodes that occurred in the river valley. In particular, the increase in the proportion of sediment‐associated Cladocera and pelagic taxa was closely correlated with floods. Through comparisons with the palaeobiological data, geochemical data allowed the identification of humid phases within the fen associated with a rising groundwater table, direct fluvial activity (floods) and alluvial deposition. We also discuss the limitations of palaeohydrological reconstructions based on these proxies, especially on fossil aquatic invertebrates.  相似文献   
63.
This paper focuses on pollen, spores, non‐pollen palynomorphs (NPPs) and certain geochemical elements from the ombrotrophic blanket bog of Zalama (Basque‐Cantabrian Mountains, northern Iberian Peninsula), with the support of a robust chronology based on 17 AMS 14C dates. The main results related to the last 8000 years show that, during the early middle Holocene, pines and deciduous forests were the most extensive tree formations. At the beginning of the succession, pines reach 44%, showing regional presence, whereas after 7600 cal. a BP, deciduous forests were particularly abundant. From c. 6500 cal. a BP the pollen diagram constructed from our samples shows the first anthropogenic evidence, linked with the new economic practices related to the Neolithic of the Basque‐Cantabrian Mountains. From 3300 cal. a BP the expansion of Fagus sylvatica is particularly clear, and has since then become one of the dominant forest species in this region. We also discuss the Holocene evolution of other noteworthy plant communities in southwestern Europe, such as Taxus baccata, Juglans and shrublands.  相似文献   
64.
65.
The separated and combined effects of land‐cover scenarios and future climate on the provision of hydrological services were evaluated in Vez watershed, northern Portugal. Soil and Water Assessment Tool was calibrated against daily discharge, sediments and nitrates, with good agreements between model predictions and field observations. Four hypothetical land‐cover scenarios were applied under current climate conditions (eucalyptus/pine, oak, agriculture/vine and low vegetation). A statistical downscaling of four General Circulation Models, bias‐corrected with ground observations, was carried out for 2021–2040 and 2041–2060, using representative concentration pathway 4.5 scenario. Also, the combined effects of future climate conditions were evaluated under eucalyptus/pine and agriculture/vine scenario. Results for land cover revealed that eucalyptus/pine scenario reduced by 7% the annual water quantity and up to 17% in the summer period. Although climate change has only a modest effect on the reduction of the total annual discharge (?7%), the effect on the water levels during summer was more pronounced, between ?15% and ?38%. This study shows that climate change can affect the provision of hydrological services by reducing dry season flows and by increasing flood risks during the wet months. Regarding the combined effects, future climate may reduce the low flows, which can be aggravated with eucalyptus/pine scenario. In turn, peak flows and soil erosion can be offset. Future climate may increase soil erosion and nitrate concentration, which can be aggravated with agriculture scenario. Results moreover emphasize the need to consider both climate and land‐cover impacts in adaptation and land management options at the watershed scale. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
66.
The magmatic arc of the Fuegian Andes is composed mostly of Upper Mesozoic to Cenozoic calc-alkaline plutons and subordinated lavas. To the rear arc, however, isolated mid-Cretaceous monzonitic plutons and small calc-alkaline dykes and sills crop out. This calc-alkaline unit (the Ushuaia Peninsula Andesites, UPA) includes hornblende-rich, porphyritic quartz meladiorites, granodiorites, andesites, dacites and lamprophyres. Radiometric dating and cross-cutting relationships indicate that UPA is younger than the monzonitic suite. The geochemistry of UPA is medium to high K, with high LILE (Ba 500–2000 ppm, Sr 800–1400 ppm), HFSE (Th 7–23 ppm, Nb 7–13 ppm, Ta 0.5–1.1 ppm) and LREE (La 16–51 ppm) contents, along with relatively low HREE (Yb 1.7–1.3 ppm) and Y (9–19 ppm). The similar mineralogy and geochemistry of all UPA rocks suggest they evolved from a common parental magma, by low pressure crystal fractionation, without significant crustal assimilation. A pure Rayleigh fractionation model indicates that 60–65% of crystal fractionation of 60% hornblende + 34% plagioclase + 4% clinopyroxene + 1% Fe-Ti oxide, apatite and sphene (a paragenesis similar of UPA mafic rocks) can explain evolution from lamprophyres to dacites. The UPA has higher LILE, HFSE and LREE, and lower HREE and Y than the calc-alkaline plutons and lavas of the volcanic front. The HREE and Y are lower than in the potassic plutons as well. High concentrations of Th, Nb, Ta, Zr, Hf, LREE and Ce/Pb, and low U/Th, Ba/Th ratios in UPA, even in the least differentiated samples, suggest contributions from subducted sediments to the mantle source. On the other hand, relatively low HREE and Y, high LREE/HREE (La/Yb 11–38) ratios and Nb-Ta contents can be interpreted as mantle metasomatism by partial melts of either subducted garnetiferous oceanic sediment or basalt as well. Additionally, high LILE content in UPA, similar to the potassic plutons, suggests also a mantle wedge previously metasomatized by potassic parental magmas in their route to crustal levels. Therefore, UPA represents a unique suite in the Fuegian arc generated in a multiple hybridized source. UPA generation is related to a transition from normal to flat subduction which additionally caused the widening and landward migration of the magmatic arc, as well as crustal deformation. Rear-arc magmatism endured ca. 22 m.y.; afterwards, calc-alkaline magmatism remained at the volcanic front.  相似文献   
67.
We consider the problem of projecting future climate from ensembles of regional climate model (RCM) simulations using results from the North American Regional Climate Change Assessment Program (NARCCAP). To this end, we develop a hierarchical Bayesian space-time model that quantifies the discrepancies between different members of an ensemble of RCMs corresponding to present day conditions, and observational records. Discrepancies are then propagated into the future to obtain high resolution blended projections of 21st century climate. In addition to blended projections, the proposed method provides location-dependent comparisons between the different simulations by estimating the different modes of spatial variability, and using the climate model-specific coefficients of the spatial factors for comparisons. The approach has the flexibility to provide projections at customizable scales of potential interest to stakeholders while accounting for the uncertainties associated with projections at these scales based on a comprehensive statistical framework. We demonstrate the methodology with simulations from the Weather Research & Forecasting regional model (WRF) using three different boundary conditions. We use simulations for two time periods: current climate conditions, covering 1971 to 2000, and future climate conditions under the Special Report on Emissions Scenarios (SRES) A2 emissions scenario, covering 2041 to 2070. We investigate and project yearly mean summer and winter temperatures for a domain in the South West of the United States.  相似文献   
68.
The chemical compositions (Na+, NH4 +, K+, Mg2+, Ca2+, Cl?, NO2 ?, NO3 ?, SO4 2?, HCO3 ?) of wet precipitation and nitrogen isotope compositions δ15N(NH4 +) were studied from January to December 2010 in Wroc?aw (SW Poland). Results of a principle component analysis show that 82 % of the data variability can be explained by three main factors: 1) F1 (40 %) observed during vegetative season (electrical conductivity, HCO3 ?, NO3 ?, NO2 ?, NH4 + and SO4 2?), mainly controlling rainwater mineralization; 2) F2 (26 %) observed during vegetative and heating seasons (K+, Ca2+ and Mg2+), probably representing a combination of two processes: anthropogenic dusts and fertilizers application in agricultural fields, and 3) F3 (16 %) reported mainly during heating season (Na+ and Cl?) probably indicating the influence of marine aerosols. Variations of δ15N(NH4 +) from ?11.5 to 18.5?‰ identify three main pathways for the formation of NH4 +: 1) equilibrium fractionation between NH3 and NH4 +; 2) kinetic exchange between NH3 and NH4 +; 3) NH4 + exchange between atmospheric salts particles and precipitation. The coupled chemical/statistical analysis and δ15N(NH4 +) approach shows that while fossil fuels burning is the main source of NH4 + in precipitation during the heating season, during the vegetative season NH4 + originates from local sewage irrigation fields in Osobowice or agricultural fertilizers.  相似文献   
69.
Complex interactions of climate and volcanic activity have shaped the environment of Iceland during the Holocene. Palaeoecological records from Iceland offer a unique look at a Holocene environment that was uninhabited by humans and free of mammal herbivores until about AD 870. We present a new reconstruction of Holocene vegetation and landscape dynamics from a small lake, Barðalækjartjörn, located near the highland margin in Northwest Iceland. A multi‐proxy approach was used to reconstruct vegetation based on pollen and plant macrofossil analysis and landscape stability based on lithological proxies. The record covers the period c. 10 300–200 cal. a BP. For the first two millennia aeolian processes probably played a part in vegetation development. This period is characterized by high input of minerogenic material into the lake and a vegetation assemblage in which plants tolerant of aeolian deposition are prominent. Betula pubescens woodland reached a maximum between c. 7400 and 6500 cal. a BP. Betula nana‐dominated dwarf shrub heath replaced woodland after c. 4000 cal. a BP, following the onset of Neoglaciation. Land use following human settlement caused an environmental shift at the highland margin. Betula pubescens probably disappeared from the vicinity of the lake soon thereafter. Large‐scale soil erosion began at c. 1000 cal. a BP in the wake of human activities, such as introduction of grazing livestock and woodcutting. This study offers an important long‐term perspective of the development of the highland ecosystem under both wholly natural and human‐influenced conditions.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号