首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   9篇
  国内免费   3篇
测绘学   7篇
大气科学   5篇
地球物理   24篇
地质学   36篇
海洋学   7篇
天文学   31篇
综合类   2篇
自然地理   8篇
  2023年   2篇
  2021年   1篇
  2020年   3篇
  2019年   7篇
  2018年   1篇
  2017年   5篇
  2016年   7篇
  2015年   9篇
  2014年   3篇
  2013年   8篇
  2012年   5篇
  2011年   9篇
  2010年   6篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   5篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   5篇
  2001年   8篇
  2000年   2篇
  1998年   4篇
  1997年   1篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1983年   1篇
  1979年   1篇
排序方式: 共有120条查询结果,搜索用时 15 毫秒
111.
We present here stellar spectra of B stars obtained with the EURD spectrograph, one of the three instruments on board MINISAT-01. EURD is a spectrograph specially designed to detect diffuse radiation in thewavelength range between 350 and 1100 Å with 5 Å spectral resolution. EURD main scientific targets are: the spectrum of interstellar medium,atmospheric airglow, decaying neutrinos, Moon and early type stars.  相似文献   
112.
This work reports on the application of the Eulerian perturbation theory to a recently proposed model of cosmological structure formation by gravitational instability. Its physical meaning is discussed in detail and put in perspective of previous works. The model incorporates in a systematic fashion corrections to the popular dust model owing to multistreaming and, more generally, the small-scale, virialized degrees of freedom. It features a time-dependent length-scale L ( t ) estimated to be   L / r 010-1  [ r 0( t ) is the non-linear scale, at which   2=1]  . The model provides a new angle on the dust model and allows us to overcome some of its limitations. Thus, the scale L ( t ) works as a physically meaningful short-distance cut-off for the divergences appearing in the perturbation expansion of the dust model when there is too much initial power on small scales. The model also incorporates the generation of vorticity by tidal forces; according to the perturbational result, the filtered vorticity for standard cold dark matter initial conditions should be significant today only at scales below 1  h 1 Mpc.  相似文献   
113.
Numerical models can help to push forward the knowledge about complex dynamic physical systems. Modern approaches employ detailed mathematical models, taking into consideration inherent uncertainties on input parameters (phenomenological parameters or boundary and initial conditions, among others). Particle-laden flows are complex physical systems found in nature, generated due to the (possible small) spatial variation on the fluid density promoted by the carried particles. They are one of the main mechanisms responsible for the deposition of sediments on the seabed. A detailed understanding of particle-laden flows, often referred to as turbidity currents, helps geologists to understand the mechanisms that give rise to reservoirs, strategic in oil exploration. Uncertainty quantification (UQ) provides a rational framework to assist in this task, by combining sophisticated computational models with a probabilistic perspective in order to deepen the knowledge about the physics of the problem and to access the reliability of the results obtained with numerical simulations. This work presents a stochastic analysis of sediment deposition resulting from a turbidity current considering uncertainties on the initial sediment concentrations and particles settling velocities. The statistical moments of the deposition mapping, like other important features of the currents, are approximated by a Sparse Grid Stochastic Collocation method that employ a parallel flow solver for the solution of the deterministic problems associated to the grid points. The whole procedure is supported and steered by a scientific workflow management engine designed for high performance computer applications.  相似文献   
114.
Mineral inclusions are ubiquitous in metamorphic rocks and elastic models for host‐inclusion pairs have become frequently used tools for investigating pressure–temperature (P–T) conditions of mineral entrapment. Inclusions can retain remnant pressures () that are relatable to their entrapment P–T conditions using an isotropic elastic model and P–T–V equations of state for host and inclusion minerals. Elastic models are used to constrain P–T curves, known as isomekes, which represent the possible inclusion entrapment conditions. However, isomekes require a temperature estimate for use as a thermobarometer. Previous studies obtained temperature estimates from thermometric methods external of the host‐inclusion system. In this study, we present the first P–T estimates of quartz inclusion entrapment by integrating the quartz‐in‐garnet elastic model with titanium concentration measurements of inclusions and a Ti‐in‐quartz solubility model (QuiG‐TiQ). QuiG‐TiQ was used to determine entrapment P–T conditions of quartz inclusions in garnet from a quartzofeldspathic gneiss from Goodenough Island, part of the (ultra)high‐pressure terrane of Papua New Guinea. Raman spectroscopic measurements of the 128, 206, and 464 cm?1 bands of quartz were used to calculate inclusion pressures using hydrostatic pressure calibrations (), a volume strain calculation (), and elastic tensor calculation (), that account for deviatoric stress. values calculated from the 128, 206, and 464 cm?1 bands’ hydrostatic calibrations are significantly different from one another with values of 1.8 ± 0.1, 2.0 ± 0.1, and 2.5 ± 0.1 kbar, respectively. We quantified elastic anisotropy using the 128, 206 and 464 cm?1 Raman band frequencies of quartz inclusions and stRAinMAN software (Angel, Murri, Mihailova, & Alvaro, 2019,  234 :129–140). The amount of elastic anisotropy in quartz inclusions varied by ~230%. A subset of inclusions with nearly isotropic strains gives an average and of 2.5 ± 0.2 and 2.6 ± 0.2 kbar, respectively. Depending on the sign and magnitude, inclusions with large anisotropic strains respectively overestimate or underestimate inclusion pressures and are significantly different (<3.8 kbar) from the inclusions that have nearly isotropic strains. Titanium concentrations were measured in quartz inclusions exposed at the surface of the garnet. The average Ti‐in‐quartz isopleth (19 ± 1 ppm [2σ]) intersects the average QuiG isomeke at 10.2 ± 0.3 kbar and 601 ± 6°C, which are interpreted as the P–T conditions of quartzofeldspathic gneiss garnet growth and entrapment of quartz inclusions. The P–T intersection point of QuiG and Ti‐in‐quartz univariant curves represents mechanical and chemical equilibrium during crystallization of garnet, quartz, and rutile. These three minerals are common in many bulk rock compositions that crystallize over a wide range of P–T conditions thus permitting application of QuiG‐TiQ to many metamorphic rocks.  相似文献   
115.
Al Huwaysah 010 is an ungrouped achondrite meteorite, recently referred to as a brachinite-like meteorite. This meteorite, showing a fine-grained assemblage of low-Ca pyroxene and opaque phases, is strongly reduced in comparison to other reduced brachinites. The occurrence of some tiny plates of graphite and oldhamite in this meteorite suggests that a partial melt residue has experienced a further reduction process. Olivine, the most abundant phase, is compositionally homogeneous (Fo83.3) as well as the clinopyroxene (En45.5Fs10.8Wo43.7) and the plagioclase (Ab69.5). Orthopyroxene (En85.4Fs13.9Wo0.7) also occurs but only in a fine intergrowth. Other accessory phases are Fe metal grains (Ni-free or Cr-bearing Fe-Ni alloy), troilite, chlorapatite, pentlandite (as inclusions in chromite). The sample shows two different closure temperatures: the highest (≈900°C) is determined via the olivine–chromite intercrystalline geothermometer and the lowest temperature (≈520°C) is determined via the pyroxene-based intracrystalline geothermometer. These temperatures may represent, respectively, the closure temperature associated with the formation and a subsequent impact event excavating the sample from the parental body. The visible to near-infrared (VNIR) reflectance spectra of Al Huwaysah 010 exhibit low reflectance, consistent with the presence of darkening components, and weak absorptions indicative of olivine and pyroxene. Comparing the spectral parameters of Al Huwaysah 010 to potential parent bodies characterized by olivine–pyroxene mineralogy, we find that it falls within the field previously attributed to the SIII type asteroids. These results lead us to classify the Al Huwaysah 010 meteorite as the most reduced brachinite, whose VNIR spectral features show strong affinities with those of SIII asteroids.  相似文献   
116.
Patagonia, including the island of Tierra del Fuego, lies in southernmost South America at the junction of the South American, Antarctic, and Scotia tectonic plates. Historical and instrumental records have documented several local earthquakes of damaging magnitude, posing a threat to the rapidly growing population of 300,000 and the expanding industrial and service infrastructure. Short and inaccurate instrumental records of local seismic events and a diffuse epicenter distribution not clearly related to the recognized seismogenic structures have hindered an adequate evaluation of the seismic hazard for this region. To improve this situation, a paleoseismological study was carried out on two gravelly strandplains on the Atlantic coast of Patagonia. Surveying combined ground-probing radar, vertical electric sounding, and seismic refraction. Coseismic normal faults buried beneath the strandplain bodies were revealed and related to the morphology of the strandplains. The faults have probable ages between 0.9 and 6.4 kyr BP and a recurrence rate of about 1 kyr. The more likely source for these structures is the Magallanes-Fagnano fault, a continental transform fault that crosses Tierra del Fuego. The distance of more than 300 km from the buried coseismic structures to the trace of the Magallanes-Fagnano fault argues for high-magnitude earthquake activity on this fault throughout the Holocene. Urban development on soft glacial and alluvial substrates increases the hazard.  相似文献   
117.
Northwestern Costa Rica is built upon an oceanic plateau that has developed chemical and geophysical characteristics of the upper continental crust. A major factor in converting the oceanic plateau to continental crust is the production, evolution, and emplacement of silicic magmas. In Costa Rica, the Caribbean Large Igneous Province (CLIP) forms the overriding plate in the subduction of the Cocos Plate—a process that has occurred for at least the last 25 my. Igneous rocks in Costa Rica older than about 8 Ma have chemical compositions typical of ocean island basalts and intra-oceanic arcs. In contrast, younger igneous deposits contain abundant silicic rocks, which are significantly enriched in SiO2, alkalis, and light rare-earth elements and are geochemically similar to the average upper continental crust. Geophysical evidence (high Vp seismic velocities) also indicates a relatively thick (~40 km), addition of evolved igneous rocks to the CLIP. The silicic deposits of NW Costa Rica occur in two major compositional groups: a high-Ti and a low-Ti group with no overlap between the two. The major and trace element characteristics of these groups are consistent with these magmas being derived from liquids that were extracted from crystal mushes—either produced by crystallization or by partial melting of plutons near their solidi. In relative terms, the high-Ti silicic liquids were extracted from a hot, dry crystal mush with low oxygen fugacity, where plagioclase and pyroxene were the dominant phases crystallizing, along with lesser amounts of hornblende. In contrast, the low-Ti silicic liquids were extracted from a cool, wet crystal mush with high oxygen fugacity, where plagioclase and amphibole were the dominant phases crystallizing. The hot-dry-reducing magmas dominate the older sequence, but the youngest sequence contains only magmas from the cold-wet-oxidized group. Silicic volcanic deposits from other oceanic arcs (e.g., Izu-Bonin, Marianas) have chemical characteristics distinctly different from continental crust, whereas the NW Costa Rican silicic deposits have chemical characteristics nearly identical to the upper continental crust. The transition in NW Costa Rica from mafic oceanic arc and intra-oceanic magma to felsic, upper continental crust-type magma is governed by a combination of several important factors that may be absent in other arc settings: (1) thermal maturation of the thick Caribbean plateau, (2) regional or local crustal extension, and (3) establishment of an upper crustal reservoir.  相似文献   
118.
Abstract– Serra da Cangalha is a complex impact structure with a crater diameter of 13,700 m and a central uplift diameter of 5800 m. New findings of shatter cones, planar fractures, feather features, and possible planar deformation features are presented. Several ring‐like features that are visible on remote sensing imagery are caused by selective erosion of tilted strata. The target at Serra da Cangalha is composed of Devonian to Permian sedimentary rocks, mainly sandstones that are interlayered with siltstone and claystones. NNE–SSW and WNW–ESE‐striking joint sets were present prior to the impact and also overprinted the structure after its formation. As preferred zones of weakness, these joint sets partly controlled the shape of the outer perimeter of the structure and, in particular, affected the deformation within the central uplift. Joints in radial orientation to the impact center did not undergo a change in orientation during tilting of strata when the central uplift was formed. These planes were used as major displacement zones. The asymmetry of the central uplift, with preferred overturning of strata in the northern to western sector, may suggest a moderately oblique impact from a southerly direction. Buckle folding of tilted strata, as well as strata overturning, indicates that the central uplift became gravitationally unstable at the end of crater formation.  相似文献   
119.
Abstract– The near‐circular Colônia structure, located in the southern suburbs of the mega‐city of São Paulo, Brazil, has attracted the attention of geoscientists for several decades due to its anomalous character and the complete absence of any plausible endogenous geologic explanation for its formation. Origin by impact cratering has been suggested repeatedly since the 1960s, but no direct evidence for this has been presented to date. New seismic data have been recently acquired at Colônia, providing new insights into the characteristics and possible layering of infill of the structure, as well as into the depth to the underlying basement. We review the current knowledge about the Colônia structure, present the new seismic data, and discuss the existing—as yet still indirect—evidence for a possible origin by an impact. The new data suggest the existence of a sedimentary fill of approximately 275 m thickness and also the presence of two intermediate zones between sediment and basement: an upper zone that is approximately 65 m thick and can be interpreted as a possible crater‐fill breccia, whereas the other zone possibly represents fractured/brecciated basement, with a thickness of approximately 50 m. Although this depth to basement seems to be inconsistent with the expected geometry of a simple, bowl‐shape impact structure of such diameter, there are a number of still unconstrained parameters that could explain this, such as projectile nature, size and velocity, impact angle, and particularly the current erosion depth.  相似文献   
120.
The trace-element composition of rutile is commonly used to constrain PTt conditions for a wide range of metamorphic systems. However, recent studies have demonstrated the redistribution of trace elements in rutile via high-diffusivity pathways and dislocation-impurity associations related to the formation and evolution of microstructures. Here, we investigate trace-element migration in low-angle boundaries formed by dislocation creep in rutile within an omphacite vein of the Lago di Cignana unit (Western Alps, Italy). Zr-in-rutile thermometry and inclusions of quartz in rutile and of coesite in omphacite constrain the conditions of rutile deformation to around the prograde boundary from high pressure to ultra-high pressure (~2.7 GPa) at temperatures of 500–565°C. Crystal-plastic deformation of a large rutile grain results in low-angle boundaries that generate a total misorientation of ~25°. Dislocations constituting one of these low-angle boundaries are enriched in common and uncommon trace elements, including Fe and Ca, providing evidence for the diffusion and trapping of trace elements along the dislocation cores. The role of dislocation microstructures as fast-diffusion pathways must be evaluated when applying high-resolution analytical procedures as compositional disturbances might lead to erroneous interpretations for Ca and Fe. In contrast, our results indicate a trapping mechanism for Zr.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号