首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   343篇
  免费   16篇
  国内免费   3篇
测绘学   8篇
大气科学   31篇
地球物理   70篇
地质学   107篇
海洋学   41篇
天文学   56篇
综合类   1篇
自然地理   48篇
  2023年   1篇
  2022年   2篇
  2021年   8篇
  2020年   7篇
  2019年   4篇
  2018年   5篇
  2017年   9篇
  2016年   15篇
  2015年   4篇
  2014年   7篇
  2013年   18篇
  2012年   16篇
  2011年   13篇
  2010年   17篇
  2009年   26篇
  2008年   27篇
  2007年   23篇
  2006年   13篇
  2005年   16篇
  2004年   13篇
  2003年   12篇
  2002年   16篇
  2001年   5篇
  2000年   12篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   5篇
  1994年   4篇
  1993年   5篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1989年   5篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1983年   6篇
  1982年   5篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1971年   2篇
  1969年   1篇
排序方式: 共有362条查询结果,搜索用时 312 毫秒
161.
Mesoscale eddies, particularly anticyclonic ones, are dominant features in the Kuril Basin of the Okhotsk Sea. In 1999, both surface drifter and hydrographic observations caught the same anticyclonic eddy northwest of Bussol’ Strait, which has a diameter of ∼100 km, typical surface velocity of 0.2–0.3 m s−1, and less dense core extending to a depth of ∼1200 m. Based on an idea that the generation of mesoscale eddies is caused by strong tidal mixing in and around Kuril Straits, we have conducted a series of three-dimensional numerical model experiments, in which strong tidal mixing is simply parameterized by increasing coefficients of vertical eddy viscosity and diffusivity along the eastern boundary. Initially, a regular series of disturbances with a wavelength of ∼70 km starts to develop. The disturbances can be clearly explained by a linear instability theory and regarded as the baroclinic instability associated with the near-surface front formed in the region between the enhanced mixing and offshore regions. In the mature phase, the disturbances grow large enough that some eddies pinch off and advect offshore (westward), with the scale of disturbances increasing gradually. Typical eddy scale and its westward propagation speed are ∼100 km and ∼0.6 km day−1, respectively, which are consistent with the observations by satellites. The westward propagation can be explained partly due to nonlinear effect of self-offshore advection and partly due to the β-effect. With the inclusion of the upper ocean restoring, the dominance of anticyclonic eddy, extending from surface to a depth of ∼1200 m, can be reproduced.  相似文献   
162.
163.
The effect of uranium added in ecologically relevant concentrations (1 × 10−5 and 1 × 10−6 M) to stable multispecies biofilms was studied by electrochemical oxygen microsensors with tip diameters of 10 μm and by confocal laser fluorescence microscopy (CLSM). The microsensor profile measurements in the stable multispecies biofilms exposed to uranium showed that the oxygen concentration decreased faster with increasing biofilm depth compared to the uranium free biofilms. In the uranium containing biofilms, the oxygen consumption, calculated from the steady-state microprofiles, showed high consumption rates of up to 61.7 nmol cm−3 s−1 in the top layer (0-70 μm) and much lower consumption rates in the lower zone of the biofilms. Staining experiments with 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) and 4,6-diamidino-2-phenylindole (DAPI) confirmed the high respiratory activities of the bacteria in the upper layer. Analysis of the amplified 16S rRNA gene fragments showed that the addition of uranium in ecologically relevant concentrations did not change the bacterial diversity in the stable multispecies biofilms and is therefore not responsible for the different oxygen profiles in the biofilms. The fast decrease in the oxygen concentrations in the biofilm profiles showed that the bacteria in the top region of the biofilms, i.e., the metabolically most active biofilm zone, battle the toxic effects of aqueous uranium with an increased respiratory activity. This increased respiratory activity results in O2 depleted zones closer to the biofilm/air interface which may trigger uranium redox processes, since suitable redox partners, e.g., extracellular polymeric substance (EPS) and other organics (e.g., metabolites), are sufficiently available in the biofilm porewaters. Such redox reactions may lead to precipitation of uranium (IV) solids and consequently to a removal of uranium from the aqueous phase.  相似文献   
164.
The potential impact of climate change on hydrological extremes is of increasing concern across the globe. Here, a national-scale grid-based hydrological model is used to investigate historical trends and potential future changes in low flow frequency across Great Britain. The historical analyses use both observational data (1891–2015) and ensemble data from a regional climate model (1900–2006). The results show relatively few significant trends in historical low flows (2- or 20-year return period), whether based on 7- or 30-day annual minima. Significant negative trends seen in some limited parts of the country when using observational data are generally not seen when using climate model data. The future analyses use climate model ensemble data for both near future and far future time periods (2020–2049 and 2070–2099 respectively), which are compared to a baseline sub-period from the historical ensemble (1975–2004). The results show future reductions in low flows, which are generally larger in the south of the country, at the higher (20-year) return period, and for the later time period. Reductions are more limited if the estimates of future potential evaporation include the effect of increased carbon dioxide concentrations on stomatal resistance. Such reductions in river flow could have significant impacts on the aquatic environment and on agriculture, and present a challenge for water managers, especially as reductions in water supply are likely to occur alongside increases in demand.  相似文献   
165.
Many actions to reduce GHG emissions have wider impacts on health, the economy, and the environment, beyond their role in mitigating climate change. These ancillary impacts can be positive (co-benefits) or negative (conflicts). This article presents the first quantitative review of the wider impacts on health and the environment likely to arise from action to meet the UK's legally-binding carbon budgets. Impacts were assessed for climate measures directed at power generation, energy use in buildings, and industry, transport, and agriculture. The study considered a wide range of health and environmental impacts including air pollution, noise, the upstream impacts of fuel extraction, and the lifestyle benefits of active travel. It was not possible to quantify all impacts, but for those that were monetized the co-benefits of climate action (i.e. excluding climate benefits) significantly outweigh the negative impacts, with a net present value of more than £85 billion from 2008 to 2030. Substantial benefits arise from reduced congestion, pollution, noise, and road accidents as a result of avoided journeys. There is also a large health benefit as a result of increased exercise from walking and cycling instead of driving. Awareness of these benefits could strengthen the case for more ambitious climate mitigation action.

Policy relevance

This article demonstrates that actions to mitigate GHG emissions have significant wider benefits for health and the environment. Including these impacts in cost–benefit analysis would strengthen the case for the UK (and similar countries) to set ambitious emissions reduction targets. Understanding co-benefits and trade-offs will also improve coordination across policy areas and cut costs. In addition, co-benefits such as air quality improvements are often immediate and local, whereas climate benefits may occur on a longer timescale and mainly in a distant region, as well as being harder to demonstrate. Dissemination of the benefits, along with better anticipation of trade-offs, could therefore boost public support for climate action.  相似文献   

166.
ABSTRACT

This study explores the communication and organising of youth volunteers during a crisis, focusing on how they conceived, framed, and executed self-organising efforts during the 2011 Rena oil spill in New Zealand. It offers insights into the intersections of self-organising, youth volunteering and crisis events which have not been researched before. The study addresses two core research questions: 1. how was ‘volunteering’ conceptualised by youth volunteers involved in the Rena crisis; and 2. how did these volunteers communicate and self-organise during this crisis? The findings indicate that self-organising emerged out of a resistance towards structured responses and as a reaction to the inability of the official volunteer response to meet the needs of the community. Self-organised efforts were particularly attractive among youth volunteers because they offered flexibility, required minimal administrative processes, and fostered an environment of innovation and creativity. The volunteers’ youthful energy and technological aptitude additionally drove their self-organised responses. The study identifies the considerable challenges that crisis officials faced in utilising youth volunteers despite the significant advantages of self-organising.  相似文献   
167.
Glacial varves can give significant insights into recession and melting rates of decaying ice sheets. Moreover, varve chronologies can provide an independent means of comparison to other annually resolved climatic archives, which ultimately help to assess the timing and response of an ice sheet to changes across rapid climate transitions. Here we report a composite 1257‐year‐long varve chronology from southeastern Sweden spanning the regional late Allerød–late Younger Dryas pollen zone. The chronology was correlated to the Greenland Ice‐Core Chronology 2005 using the time‐synchronous Vedde Ash volcanic marker, which can be found in both successions. For the first time, this enables secure placement of the Lateglacial Swedish varve chronology in absolute time. Geochemical analysis from new varve successions indicate a marked change in sedimentation regime accompanied by an interruption of ice‐rafted debris deposition synchronous with the onset of Greenland Stadial 1 (GS‐1; 12 846 years before AD 1950). With the support of a simple ice‐flow/calving model, we suggest that slowdown of sediment transfer can be explained by ice‐sheet margin stabilization/advance in response to a significant drop of the Baltic Ice Lake level. A reassessment of chronological evidence from central‐western and southern Sweden further supports the hypothesis of synchronicity between the first (penultimate) catastrophic drainage of the Baltic Ice Lake and the start of GS‐1 in Greenland ice‐cores. Our results may therefore provide the first chronologically robust evidence linking continental meltwater forcing to rapid atmosphere–ocean circulation changes in the North Atlantic.  相似文献   
168.
The impacts of climate change on future river flows are a growing concern. Typically, impacts are simulated by driving hydrological models with climate model ensemble data. The U.K. Climate Projections 2009 (UKCP09) provided probabilistic projections, enabling a risk-based approach to decision-making under climate change. Recently, an update was released—UKCP18—so there is a need for information on how impacts may differ. The probabilistic projections from UKCP18 and UKCP09 are here applied using the change factor method with catchment-based hydrological modelling for 10 catchments across England. Projections of changes in median, mean, high, and low flows are made for the 2050s, using the A1B emissions scenario from UKCP09 and UKCP18 as well as the RCP4.5 and RCP8.5 emissions scenarios from UCKP18. The results show that, in all catchments for all flow measures, the central estimate of change under UKCP18 is similar to that from UKCP09 (A1B emissions). However, the probabilistic uncertainty ranges from UKCP18 are, in all cases, greater than from UKCP09, despite UKCP18 having a smaller ensemble size than UKCP09. Although there are differences between the central estimates of change using UKCP18 RCP4.5, RCP8.5 and A1B emissions, there is considerable overlap in the uncertainty ranges. The results suggest that existing assessments of hydrological impacts remain relevant, though it will be necessary to evaluate sensitive decisions using the latest projections. The analysis will aid development of advice to users of current guidance based on UKCP09 and help make decisions about the prioritization of further hydrological impacts work using UKCP18, which should also apply other products from UKCP18 like the 12-km regional data.  相似文献   
169.
Theoretical analysis and computational simulations have been carried out to investigate how medium and pore‐fluid compressibility affects the chemical‐dissolution front propagation, which is associated with a fully‐coupled nonlinear problem between porosity, pore‐fluid pressure, pore‐fluid density and reactive chemical‐species transport within a deformable and fluid‐saturated porous medium. When the fully‐coupled nonlinear system is in a subcritical state, some analytical solutions have been derived for a special case, in which the ratio of the equilibrium concentration to the solid molar density of the chemical species is approaching zero. To investigate the effect of either medium compressibility or pore‐fluid compressibility on the evolutions of chemical dissolution fronts in supercritical chemical dissolution systems, numerical algorithms and procedures have been also proposed. The related theoretical and numerical results have demonstrated that: (i) not only can pore‐fluid compressibility affect the propagating speeds of chemical dissolution fronts in both subcritical and supercritical systems, but also it can affect the growth and amplitudes of irregular chemical dissolution fronts in supercritical systems; (ii) medium compressibility may have a little influence on the propagating speeds of chemical dissolution fronts, but it can have significant effects on the growth and amplitudes of irregular chemical dissolution fronts in supercritical systems; and (iii) both medium and pore‐fluid compressibility may stabilize irregular chemical‐dissolution‐fronts in supercritical chemical dissolution systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
170.
The potential impacts of climate change are an increasing focus of research, and ever‐larger climate projection ensembles are available, making standard impact assessments more onerous. An alternative way of estimating impacts involves response surfaces, which present the change in a given indicator for a large number of plausible climatic changes defined on a regular sensitivity domain. Sets of climate change projections can then be overlaid on the response surface and impacts estimated from the nearest corresponding points of the sensitivity domain, providing a powerful method for fast impact estimation for multiple projections and locations. However, the effect of assumptions necessary for initial response surface development must be assessed. This paper assesses the uncertainty introduced by use of a sensitivity framework for estimating changes in 20‐year return period flood peaks in Britain. This sensitivity domain involves mean annual and seasonal precipitation changes, and a number of simplifications were necessary for consistency and to reduce dimensionality. The effect of these is investigated for nine catchments across Britain, representing nine typical response surfaces (response types), using three sets of climate projections. The results show that catchments can have different causes of uncertainty and some catchments have an overall higher level of uncertainty than others. These differences are compatible with the underlying climatological and hydrological differences between the response types, giving confidence in generalization of the results. This enables the development of uncertainty allowances by response type, to be used alongside the response surfaces to provide more robust impact estimates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号