首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6889篇
  免费   648篇
  国内免费   244篇
测绘学   325篇
大气科学   693篇
地球物理   2376篇
地质学   2974篇
海洋学   345篇
天文学   464篇
综合类   217篇
自然地理   387篇
  2024年   6篇
  2023年   15篇
  2022年   64篇
  2021年   84篇
  2020年   74篇
  2019年   93篇
  2018年   579篇
  2017年   498篇
  2016年   421篇
  2015年   232篇
  2014年   295篇
  2013年   289篇
  2012年   735篇
  2011年   524篇
  2010年   177篇
  2009年   204篇
  2008年   174篇
  2007年   148篇
  2006年   178篇
  2005年   860篇
  2004年   892篇
  2003年   674篇
  2002年   197篇
  2001年   87篇
  2000年   58篇
  1999年   20篇
  1998年   18篇
  1997年   24篇
  1996年   13篇
  1995年   6篇
  1994年   8篇
  1993年   7篇
  1992年   8篇
  1991年   11篇
  1990年   12篇
  1989年   7篇
  1988年   7篇
  1987年   7篇
  1986年   3篇
  1985年   5篇
  1984年   3篇
  1983年   4篇
  1981年   4篇
  1980年   4篇
  1978年   3篇
  1976年   4篇
  1975年   7篇
  1973年   3篇
  1965年   3篇
  1948年   2篇
排序方式: 共有7781条查询结果,搜索用时 15 毫秒
961.
Climate is one factor that determines the potential range of malaria. As such, climate change may work with or against efforts to bring malaria under control. We developed a model of future climate suitability for stable Plasmodium falciparum malaria transmission in Zimbabwe. Current climate suitability for stable malaria transmission was based on the MARA/ARMA model of climatic constraints on the survival and development of the Anopheles vector and the Plasmodium falciparum malaria parasite. We explored potential future geographic distributions of malaria using 16 projections of climate in 2100. The results suggest that, assuming no future human-imposed constraints on malaria transmission, changes in temperature and precipitation could alter the geographic distribution of malaria in Zimbabwe, with previously unsuitable areas of dense human population becoming suitable for transmission. Among all scenarios, the highlands become more suitable for transmission, while the lowveld and areas with low precipitation show varying degrees of change, depending on climate sensitivity and greenhouse gas emission stabilization scenarios, and depending on the general circulation model used. The methods employed can be used within or across other African countries.  相似文献   
962.
Article 2 of the UNFCCC: Historical Origins,Recent Interpretations   总被引:2,自引:2,他引:2  
Article 2 of the UN Framework Convention on Climate Change (UNFCCC), which states the treaty's long-term objective, is the subject of a growing literature that examines means to interpret and implement this provision. Here we provide context for these studies by exploring the intertwined scientific, legal, economic, and political history of Article 2. We review proposed definitions for “dangerous anthropogenic interference” and frameworks that have been proposed for implementing these definitions. Specific examples of dangerous climate changes suggest limits on global warming ranging from 1 to 4 C and on concentrations ranging from 450 to 700 ppm CO2 equivalents. The implications of Article 2 for near term restrictions on greenhouse-gas emissions, e.g., the Kyoto Protocol, are also discussed.  相似文献   
963.
Ostracode analysis was carried out on samples from ice-rich permafrost deposits obtained on the Bykovsky Peninsula (Laptev Sea). A composite profile was investigated that covers most of a 38-m thick permafrost sequence and corresponds to the last ca. 60 kyr of the Late Quaternary. The ostracode assemblages are similar to those known from European Quaternary lake deposits during cold stages. The ostracode habitats were small, shallow, cold, oligotrophic pools located in low centred ice wedge polygons or in small thermokarst depressions. In total, 15 taxa, representing 7 genera, were identified from 65 samples. The studied section is subdivided into six ostracode zones that correspond to Late Quaternary climatic and environmental stadial-interstadial variations established by other paleoenvironmental proxies: (1) cold and dry Zyrianian stadial (58–53 kyr BP); (2) warm and dry Karginian interstadial (48–34 kyr BP); (3) transition from the Karginian interstadial to the cold and dry Sartanian stadial (34–21 kyr BP); (4) transition from the Sartanian stadial to the warm and dry Late Pleistocene period, the Allerød (21–14 kyr BP); (5) transition from the Allerød to the warm and wet Middle Holocene (14–7 kyr BP); and (6) cool and wet Late Holocene (ca. 3 kyr BP). The abundance and diversity of the ostracodes will be used as an additional bioindicator for paleoenvironmental reconstructions of the Siberian Arctic.  相似文献   
964.
The distinct element method (DEM) has been used successfully for the dynamic analysis of rigid block systems. One of many difficulties associated with DEM is modeling of damping. In this paper, new procedures are proposed for the damping modeling and its numerical implementation in distinct element analysis of rigid multi-block systems. The stiffness proportional damping is constructed for the prescribed damping ratio, based on the non-zero fundamental frequency effective during the time interval while the boundary conditions remain essentially constant. At this time interval, the fundamental frequency can be estimated without complete eigenvalue analysis. The damping coefficients will vary while the damping ratio remains the same throughout the entire analysis. A new numerical procedure is developed to prevent unnecessary energy loss that can occur during the separation phases. These procedures were implemented in the development of the distinct element method for the dynamic analyses of piled multi-block systems. The analysis results for the single-block and two-block systems were in a good agreement with the analytic predictions. Applications to the seismic analyses of piled fourblock systems revealed that the new procedures can make a significant difference and may lead to much-improved results.  相似文献   
965.
Determination of biosphere–atmosphere exchanges requires accurate quantification of the turbulent fluxes of energy and of a wide variety of trace gases. Relaxed Eddy Accumulation (REA) is a method that has received increasing attention in recent years, because it does not require any rapid sensor for the scalar measurements as the Eddy Correlation method (EC) does. As in all micrometeorological studies, REA measurements in the atmospheric surface layer are valid under some restrictive conditions so as to be representative of a specific ecosystem. These conditions are the homogeneity of the underlying surface, stationary and horizontally homogeneous turbulence. For most experiments these conditions are not fully satisfied. Data uncertainties can also be related to not fulfilling the method principles or to the technical characteristics of the REA system itself. In order to assess REA measurement quality, a methodological approach of data analysis is developed in this study. This methodological analysis is based on the establishment of criteria for data quality control. A set of them, deduced from the mean and turbulent flow, are called ‘Dynamic criteria’ and are designated to control the stationarity and homogeneity of the w function and the validation of Taylor’s hypothesis. A second set (‘REA operational criteria’) is designed to check the sampling process and, more precisely, the homogeneity of the negative and positive selection process throughout the sampling period. A third set of criteria (‘Chemical scalar criteria’) concerns the scalar measurements. Results of the criteria application to data measured at two different experimental sites are also presented. Cut-off limits of criteria are defined based on their statistical distribution and shown to be specific for each site. Strictness of each criterion, defined by the percentage of flagged samples, is analysed in conjunction with the meteorological conditions and atmospheric stability. It is found that flagged samples mainly correspond to neutral and stable nocturnal conditions. During daytime, nearly free convection conditions can also yield poor quality data.  相似文献   
966.
We investigate the flow over Arctic leads using a mesoscale numerical model, typical of both summer and winter, under idealised conditions. We find that Arctic leads may be the source of standing atmospheric internal gravity waves during both seasons. The summertime wave may be compared with the wave generated by a small ridge, though with the phase reversed. The mechanism for exciting the wave is found to be the internal boundary layer developing due to horizontal variations in surface temperature and roughness length. During the more exploratory wintertime simulations, with substantial temperature difference between the lead and the ice surface, we find that secondary circulations and intermittent wave-breaking may occur. The effects of the lead appear far downstream.  相似文献   
967.
Two parameterisation schemes for the turbulent surface fluxes and drag coefficients over the Arctic marginal sea-ice zone (MIZ) are (further) developed, and their results are compared with each other. Although the schemes are based on different principles (flux averaging and parameter averaging), the resulting drag coefficients differ only slightly in the case of neutral and stable stratification. For unstable stratification and sea-ice conditions being typical for the north-eastern Fram Strait, the drag coefficients resulting from the parameter-averaging concept are 5–10% larger than those of the flux-averaging concept. At a sea-ice concentration of 45%, the parameter-averaging method overestimates the heat fluxes by a factor of 1.2. An inclusion in the schemes of form drag caused by floe edges and ridges has a much larger effect on the drag coefficient, and on the momentum fluxes, than the choice between the parameter-averaging or flux-averaging methods. Based on sensitivity studies with the flux-averaging scheme, a simple formula for the effective drag coefficient above the Arctic MIZ is derived. It reduces the computational costs of the more complex parameterisations and could also be used in larger scale models. With this simple formula, the effective drag coefficient can be calculated as a function of the sea-ice concentration and skin drag coefficients for water and ice floes. The results obtained with this parameterisation differ only slightly from those using the more complex schemes. Finally, it is shown that in the MIZ, drag coefficients for sea-ice models may differ significantly from the effective drag coefficients used in atmospheric models.  相似文献   
968.
The characterisation of aggregates, like soot, firstly requires the determination of the size distribution of the primary particles. The primary particle size of combustion generated aggregates depends upon the combustion environment and the formation conditions, such as temperature, pressure and fuel-to-air ratio, among others. Since the combustion characteristics are different in the different types of burners, the characterisation of primary particles may offer the possibility to distinguish soot from different sources. In this paper, we present the signature of the primary particles and the aggregates of soot emitted by cars using diesel or biodiesel, by domestic heating, and by aircraft exhausts, which can be considered as the major sources as derived from measurements on transmission electron micrographs. The size distributions of all aggregates types with different aerodynamic diameter were log-normal and quasi-monodisperse. The size distribution of the primary particles for soot emitted by different sources showed minor differences. However, a comparison between the diameter of the primary particles and those obtained using a standard method for carbon black revealed discrepancies. The median diameter of the primary particles was combined with the median number of primary particles in an aggregate to calculate the relative particle surface area available for adsorption. In a similar way, the relative specific surface area was determined. The surface area was measured using the Brunauer-Emmett-Teller (B.E.T.) nitrogen adsorption method and the relative surface area available for adsorption was calculated.  相似文献   
969.
When a damaging extreme meteorological event occurs, the question often arises as to whether that event was caused by anthropogenic greenhouse gas emissions. The question is more than academic, since people affected by the event will be interested in recurring damages if they find that someone is at fault. However, since this extreme event could have occurred by chance in an unperturbed climate, we are currently unable to properly respond to this question. A solution lies in recognising the similarity with the cause-effect issue in the epidemiological field. The approach there is to consider the changes in the risk of the event occurring as attributable, as against the occurrence of the event itself. Inherent in this approach is a recognition that knowledge of the change in risk as well as the amplitude of the forcing itself are uncertain. Consequently, the fraction of the risk attributable to the external forcing is a probabilistic quantity. Here we develop and demonstrate this methodology in the context of the climate change problem.  相似文献   
970.
We investigate the mesoscale dynamics of the mistral through the wind profiler observations of the MAP (autumn 1999) and ESCOMPTE (summer 2001) field campaigns. We show that the mistral wind field can dramatically change on a time scale less than 3 hours. Transitions from a deep to a shallow mistral are often observed at any season when the lower layers are stable. The variability, mainly attributed in summer to the mistral/land–sea breeze interactions on a 10-km scale, is highlighted by observations from the wind profiler network set up during ESCOMPTE. The interpretations of the dynamical mistral structure are performed through comparisons with existing basic theories. The linear theory of R. B. Smith [Advances in Geophysics, Vol. 31, 1989, Academic Press, 1–41] and the shallow water theory [Schär, C. and Smith, R. B.: 1993a, J. Atmos. Sci. 50, 1373–1400] give some complementary explanations for the deep-to-shallow transition especially for the MAP mistral event. The wave breaking process induces a low-level jet (LLJ) downstream of the Alps that degenerates into a mountain wake, which in turn provokes the cessation of the mistral downstream of the Alps. Both theories indicate that the flow splits around the Alps and results in a persistent LLJ at the exit of the Rhône valley. The LLJ is strengthened by the channelling effect of the Rhône valley that is more efficient for north-easterly than northerly upstream winds despite the north–south valley axis. Summer moderate and weak mistral episodes are influenced by land–sea breezes and convection over land that induce a very complex interaction that cannot be accurately described by the previous theories.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号