首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6859篇
  免费   667篇
  国内免费   241篇
测绘学   324篇
大气科学   693篇
地球物理   2375篇
地质学   2968篇
海洋学   345篇
天文学   459篇
综合类   216篇
自然地理   387篇
  2024年   4篇
  2023年   15篇
  2022年   64篇
  2021年   76篇
  2020年   74篇
  2019年   93篇
  2018年   579篇
  2017年   498篇
  2016年   421篇
  2015年   232篇
  2014年   295篇
  2013年   288篇
  2012年   735篇
  2011年   524篇
  2010年   177篇
  2009年   203篇
  2008年   174篇
  2007年   148篇
  2006年   178篇
  2005年   860篇
  2004年   892篇
  2003年   674篇
  2002年   195篇
  2001年   87篇
  2000年   58篇
  1999年   20篇
  1998年   18篇
  1997年   24篇
  1996年   13篇
  1995年   6篇
  1994年   8篇
  1993年   7篇
  1992年   8篇
  1991年   11篇
  1990年   12篇
  1989年   7篇
  1988年   7篇
  1987年   7篇
  1986年   3篇
  1985年   5篇
  1984年   3篇
  1983年   4篇
  1981年   4篇
  1980年   4篇
  1978年   3篇
  1976年   4篇
  1975年   7篇
  1973年   3篇
  1965年   3篇
  1948年   2篇
排序方式: 共有7767条查询结果,搜索用时 31 毫秒
871.
A hybrid discrete–finite element model is introduced for simulation of mechanical behavior of geomaterials. The soil or rock is modeled as a system of discrete balls that interact through normal and shear springs. The balls can be bonded at the contact points to withstand the applied deviatoric stresses. The important feature of this model is that the confining walls that can be imagined for example as the surrounding membrane or the mold in a physical test are modeled by deformable finite elements. This allows simulation of laboratory test features more realistically compared to the situations where the surrounding walls are rigid. The relationships between micro- and macro-properties are investigated in this paper as well. These relationships and the corresponding curves are helpful tools in calibration of the numerical model for the macroscopic elastic properties.  相似文献   
872.
Mineral-specific IR absorption coefficients were calculated for natural and synthetic olivine, SiO2 polymorphs, and GeO2 with specific isolated OH point defects using quantitative data from independent techniques such as proton–proton scattering, confocal Raman spectroscopy, and secondary ion mass spectrometry. Moreover, we present a routine to detect OH traces in anisotropic minerals using Raman spectroscopy combined with the “Comparator Technique”. In case of olivine and the SiO2 system, it turns out that the magnitude of ε for one structure is independent of the type of OH point defect and therewith the peak position (quartz ε = 89,000 ± 15,000  \textl \textmol\textH2\textO-1 \textcm-2\text{l}\,\text{mol}_{{\text{H}_2}\text{O}}^{-1}\,\text{cm}^{-2}), but it varies as a function of structure (coesite ε = 214,000 ± 14,000  \textl \textmol\textH2\textO-1 \textcm-2\text{l}\,\text{mol}_{{\text{H}_2}\text{O}}^{-1}\,\text{cm}^{-2}; stishovite ε = 485,000 ± 109,000  \textl \textmol\textH2\textO-1 \textcm-2\text{l}\,\text{mol}_{{\text{H}_2}\text{O}}^{-1}\,\text{cm}^{-2}). Evaluation of data from this study confirms that not using mineral-specific IR calibrations for the OH quantification in nominally anhydrous minerals leads to inaccurate estimations of OH concentrations, which constitute the basis for modeling the Earth’s deep water cycle.  相似文献   
873.
We explore the effect of oblateness of Saturn (more massive primary) on the periodic orbits and the regions of quasi-periodic motion around both the primaries in the Saturn-Titan system in the framework of planar circular restricted three-body problem. First order interior and exterior mean motion resonances are located. The effect of oblateness is studied on the location, nature and size of periodic and quasi-periodic orbits, using the numerical technique of Poincare surface of sections. Some of the periodic orbits change to quasi-periodic orbits due to the effect of oblateness and vice-versa. The stability of the orbits around Saturn, Titan and both varies with the inclusion of oblateness. The centers of the periodic orbits around Titan move towards Saturn, whereas those around Saturn move towards Titan. For the orbit around Titan at C=2.9992, x=0.959494, the apocenter becomes pericenter. By incorporating oblateness effect, the orbit around Titan at C=2.99345, x=0.924938 is captured by Saturn, remains in various trajectories around Saturn, and as time progresses it spirals away around both the primaries.  相似文献   
874.
Around the world, several scientific projects share the interest of a global network of small Cherenkov telescopes for monitoring observations of the brightest blazars??the DWARF network. A small, ground based, imaging atmospheric Cherenkov telescope of last generation is intended to be installed and operated in Romania as a component of the DWARF network. To prepare the construction of the observatory, two support projects have been initiated. Within the framework of these projects, we have assessed a number of possible sites where to settle the observatory. In this paper we submit a brief report on the general characteristics of the best four sites selected after the local infrastructure, the nearby facilities and the social impact criteria have been applied.  相似文献   
875.
GETEMME (Gravity, Einstein??s Theory, and Exploration of the Martian Moons?? Environment), a mission which is being proposed in ESA??s Cosmic Vision program, shall be launched for Mars on a Soyuz Fregat in 2020. The spacecraft will initially rendezvous with Phobos and Deimos in order to carry out a comprehensive mapping and characterization of the two satellites and to deploy passive Laser retro-reflectors on their surfaces. In the second stage of the mission, the spacecraft will be transferred into a lower 1500-km Mars orbit, to carry out routine Laser range measurements to the reflectors on Phobos and Deimos. Also, asynchronous two-way Laser ranging measurements between the spacecraft and stations of the ILRS (International Laser Ranging Service) on Earth are foreseen. An onboard accelerometer will ensure a high accuracy for the spacecraft orbit determination. The inversion of all range and accelerometer data will allow us to determine or improve dramatically on a host of dynamic parameters of the Martian satellite system. From the complex motion and rotation of Phobos and Deimos we will obtain clues on internal structures and the origins of the satellites. Also, crucial data on the time-varying gravity field of Mars related to climate variation and internal structure will be obtained. Ranging measurements will also be essential to improve on several parameters in fundamental physics, such as the Post-Newtonian parameter ?? as well as time-rate changes of the gravitational constant and the Lense-Thirring effect. Measurements by GETEMME will firmly embed Mars and its satellites into the Solar System reference frame.  相似文献   
876.
Recently it has been shown that for finite and small values of the electron Debye length, the ion polytropic coefficient is approached to some constant value in the plasma sheath region by decreasing the plasma density. In this paper, using a plasma multi fluid model, the effect of ion polytropic coefficient γ i on the plasma sheath structure have been examined. The numerical calculations of the basic equation of the model show that the polytropic coefficient strongly affects on the plasma sheath characteristics. The results show that by transition from an isothermal flow (γ i =1) to an adiabatic flow (γ i =3), the net current to the wall and the electric potential distribution increase and the sheath width decreases in a thermal plasma sheath.  相似文献   
877.
Abstract– We detail the Kamil crater (Egypt) structure and refine the impact scenario, based on the geological and geophysical data collected during our first expedition in February 2010. Kamil Crater is a model for terrestrial small‐scale hypervelocity impact craters. It is an exceptionally well‐preserved, simple crater with a diameter of 45 m, depth of 10 m, and rayed pattern of bright ejecta. It occurs in a simple geological context: flat, rocky desert surface, and target rocks comprising subhorizontally layered sandstones. The high depth‐to‐diameter ratio of the transient crater, its concave, yet asymmetric, bottom, and the fact that Kamil Crater is not part of a crater field confirm that it formed by the impact of a single iron mass (or a tight cluster of fragments) that fragmented upon hypervelocity impact with the ground. The circular crater shape and asymmetries in ejecta and shrapnel distributions coherently indicate a direction of incidence from the NW and an impact angle of approximately 30 to 45°. Newly identified asymmetries, including the off‐center bottom of the transient crater floor downrange, maximum overturning of target rocks along the impact direction, and lower crater rim elevation downrange, may be diagnostic of oblique impacts in well‐preserved craters. Geomagnetic data reveal no buried individual impactor masses >100 kg and suggest that the total mass of the buried shrapnel >100 g is approximately 1050–1700 kg. Based on this mass value plus that of shrapnel >10 g identified earlier on the surface during systematic search, the new estimate of the minimum projectile mass is approximately 5 t.  相似文献   
878.
The Hubble constant is split into two terms H = H1 + H2 , where H1 is a decreasing function due to the Big Bang and the subsequent gravitational interaction that slows the expansion of the Universe and H2 is an increasing function that corresponds to dark energy which accelerates this expansion. For T = 13.7 Gyr we prove that H2(T) > 5 m/(yr AU). This is a quite large number and thus the impact of dark energy, which is spread almost everywhere uniformly, should be observable not only on large scales, but also in our Solar system. In particular, we show that Earth, Mars and other planets were closer to the Sun 4.5 Gyr ago. The recession speed ≈5.3 m/yr of the Earth from the Sun seems to be just right for an almost constant influx of solar energy from the origin of life on Earth up to the present over which time the Sun’s luminosity has increased approximately linearly. This presents further support for the Anthropic Principle. Namely, the existence of dark energy guarantees very stable conditions for the development of intelligent life on Earth over a period of 3.5 Gyr.  相似文献   
879.
We present photometric observations of two post-common-envelope stars, NY Vir (=PG 1336-018) and HS 0705 + 6700. The V band CCD observation of NY Vir was performed by a 40 cm telescope at Ege University Observatory and the R band observations of HS 0705 + 6700 were performed by 100 cm telescope at TÜB?TAK National Observatory. The new light curves were analyzed by the WD code and the physical parameters of stars were determined. We obtained new mid-eclipse timings for HS 0705 + 6700 and combined them with those previously published data. The analysis of the O-C residuals yields a period of about 8.06 ± 0.28 yr and an amplitude of 98.5 s for the system HS 0705 + 6700, which is attributed to the third star physically bounded to the evolved eclipsing pair. A mass function of 1.2 × 10−4 M for the third star is obtained. The existence of a third star is also confirmed by the light curve analysis, indicating light contribution of about 0.043 at phase 0.25 in R-bandpass of the eclipsing pair. Using mass-luminosity relationship of the low mass stars we estimate a mass of 0.12 M with an orbital inclination of about 20°. The O-C residuals obtained for the system NY Vir were represented by a downward parabola which indicates orbital period decrease in the system. Using the coefficient of quadratic term we calculate a rate of orbital period decrease of about dP/dt = −4.09 × 10−8days yr−1. The period decrease we have measured in NY Vir may be explained by angular momentum loss from the binary system.  相似文献   
880.
We present a study of coronal mass ejections (CMEs) which impacted one of the STEREO spacecraft between January 2008 and early 2010. We focus our study on 20 CMEs which were observed remotely by the Heliospheric Imagers (HIs) onboard the other STEREO spacecraft up to large heliocentric distances. We compare the predictions of the Fixed-?? and Harmonic Mean (HM) fitting methods, which only differ by the assumed geometry of the CME. It is possible to use these techniques to determine from remote-sensing observations the CME direction of propagation, arrival time and final speed which are compared to in-situ measurements. We find evidence that for large viewing angles, the HM fitting method predicts the CME direction better. However, this may be due to the fact that only wide CMEs can be successfully observed when the CME propagates more than 100° from the observing spacecraft. Overall eight CMEs, originating from behind the limb as seen by one of the STEREO spacecraft can be tracked and their arrival time at the other STEREO spacecraft can be successfully predicted. This includes CMEs, such as the events on 4 December 2009 and 9 April 2010, which were viewed 130° away from their direction of propagation. Therefore, we predict that some Earth-directed CMEs will be observed by the HIs until early 2013, when the separation between Earth and one of the STEREO spacecraft will be similar to the separation of the two STEREO spacecraft in 2009??C?2010.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号