The high pressure spinel polymorph of Ni2SiO4 persists metastably at 713°C and atmospheric pressure. The enthalpy of the olivine-spinel transition was obtained by measuring the heats of solution of both polymorphs in a molten oxide solvent, 2PbO · B2O3, at that temperature. For Ni2SiO4(ol)→Ni2SiO4, ΔH9860 = +1.4 ± 0.7kcal/mol. The heat content increments, H986 ? H297, were found to be: olivine, 25.73 ± 0.42kcal/mol, and spinel, 25.39 ± 0.20kcal/mol. The measured enthalpy of the transformation is consistent with the low slope of the phase boundary, ?P/?T = ~ 12b/deg, observed by Akimoto and others. The entropy of the olivine-spinel transition in Ni2SiO4 is accordingly about a factor of three smaller in magnitude (ΔS = ~ ?1cal/deg mol) than that for Co2SiO4,Fe2SiO4,Mg2SiO4or Mg2GeO4 (ΔS = ?3to?3.5cal/deg mol). 相似文献
A synthetic composition representing the Yamato 980459 martian basalt (shergottite) has been used to carry out phase relation, and rare earth element (REE) olivine and pyroxene partitioning experiments. Yamato 980459 is a sample of primitive basalt derived from a reduced end-member among martian mantle sources. Experiments carried out between 1-2 GPa and 1350-1650 °C simulate the estimated pressure-temperature conditions of basaltic melt generation in the martian mantle. Olivine-melt and orthopyroxene-melt partition coefficients for La, Nd, Sm, Eu, Gd and Yb (DREE values) were determined by LA-ICPMS, and are similar to the published values for terrestrial basaltic systems. We have not detected significant variation in D-values with pressure over the range investigated, and by comparison with previous studies carried out at lower pressure.We apply the experimentally obtained olivine-melt and orthopyroxene-melt DREE values to fractional crystallization and partial melting models to develop a three-stage geochemical model for the evolution of martian meteorites. In our model we propose two ancient (∼4.535 Ga) sources: the Nakhlite Source, located in the shallow mantle, and the Deep Mantle Source, located close to the martian core-mantle boundary. These two sources evolved distinctly on the ε143Nd evolution curve due to their different Sm/Nd ratios. By partially melting the Nakhlite Source at ∼1.3 Ga, we are able to produce a slightly depleted residue (Nakhlite Residue). The Nakhlite Residue is left undisturbed until ∼500 Ma, at which point the depleted Deep Mantle Source is brought up by a plume mechanism carrying with it high heat flow, melts and isotopic signatures of the deep mantle (e.g., ε182W, ε142Nd, etc.). The plume-derived Deep Mantle Source combines with the Nakhlite Residue producing a mixture that becomes a mantle source (herein referred to as “the Y98 source”) for Yamato 980459 and the other depleted shergottites with the characteristic range of Sm/Nd ratios of these meteorites. The same hot plume provides a heat source for the formation of enriched and intermediate shergottites. Our model reproduces the REE patterns of nakhlites and depleted shergottites and can explain high ε143Nd in depleted shergottites. Furthermore, the model results can be used to interpret whole rock Rb-Sr and Sm-Nd ages of shergottites. 相似文献
Joint analysis of deep three-dimensional models of the electrical resistivity, seismic velocity, and density of the complex hosting the Sorskoe Cu–Mo deposit (Russia) is carried out aimed at finding geophysical markers characterizing the areas of ore generation, transportation and deposition. The three-dimensional lithology model of the study area is built based on the empirical relationship between the silica content of the rocks and seismic velocities. It is in agreement with geological and geochemical studies provided in this area earlier and could be used as a basis for forecasting locations of the copper–molybdenum ore deposits at depth. A conceptual model of the copper–porphyry complex explaining the mechanisms of ore generation, transportation from the lower to the upper crust and deposition in the upper crust is suggested. In particular, it is supposed that post-magmatic supercritical gas–water ore-bearing fluids are upwelling through the plastic crust due to the sliding of the fluid films along the cleavage planes of the foliated rocks while at the depths of the brittle upper crust this mechanism could be changed by volumetric fluid transportation along the network of large pores and cracks. 相似文献
Investments in adaptation are required to reduce vulnerability and strengthen the resilience of food systems to the impacts of climate change. For low-income nations, international financing plays a central role in supporting adaptation. In this article, we document and examine adaptation projects targeting food systems financed through funding bodies of the United Nations Framework Convention on Climate Change (UNFCCC). We find that between 2004 and 2015, 3% (n?=?96) of adaptation projects supported through the UNFCCC explicitly focused on the production, processing, distribution, preparation and/or consumption of food, with US$546 m mobilized through funding bodies directly and US$1.44bn through co-financing. Agriculture is the most common sector supported, with extreme weather events the primary climate change-related impact motivating nations to apply for adaptation financing. The majority of actions are documented to adapt the food production component of food systems, with limited focus within projects on the full range of food system vulnerability and the implications on food security.Key policy insights
Enhanced international adaptation financing targeting food systems is needed, and in particular financing to address limited adaptation readiness
Supported food system projects should include holistic assessments of the entire food system in order to prioritize sector and food system component issue areas for short- and long-term efficiency
To better analyse food system linkages and aid in the prioritization of adaptation activities, adaptation-directed funds should consider placing a higher emphasis on a cross-sectoral approach within projects
Linkages between official development assistance and adaptation-directed funds could help optimize financing for food systems and mainstream food system adaptation efforts
Recent studies geared toward understanding the volatile abundances of the lunar interior have focused on the volatile‐bearing accessory mineral apatite. Translating measurements of volatile abundances in lunar apatite into the volatile inventory of the silicate melts from which they crystallized, and ultimately of the mantle source regions of lunar magmas, however, has proved more difficult than initially thought. In this contribution, we report a detailed characterization of mesostasis regions in four Apollo mare basalts (10044, 12064, 15058, and 70035) in order to ascertain the compositions of the melts from which apatite crystallized. The texture, modal mineralogy, and reconstructed bulk composition of these mesostasis regions vary greatly within and between samples. There is no clear relationship between bulk‐rock basaltic composition and that of bulk‐mesostasis regions, indicating that bulk‐rock composition may have little influence on mesostasis compositions. The development of individual melt pockets, combined with the occurrence of silicate liquid immiscibility, exerts greater control on the composition and texture of mesostasis regions. In general, the reconstructed late‐stage lunar melts have roughly andesitic to dacitic compositions with low alkali contents, displaying much higher SiO2 abundances than the bulk compositions of their host magmatic rocks. Relevant partition coefficients for apatite‐melt volatile partitioning under lunar conditions should, therefore, be derived from experiments conducted using intermediate compositions instead of compositions representing mare basalts. 相似文献
The ~5 km diameter Gow Lake impact structure formed in the Canadian Shield of northern Saskatchewan approximately 197 Myr ago. This structure has not been studied in detail since its discovery during a regional gravity survey in the early 1970s. We report here on field observations from a 2011 expedition that, when combined with subsequent laboratory studies, have revealed a wealth of new information about this poorly studied Canadian impact structure. Initially considered to be a prototypical central peak (i.e., a complex) impact structure, our observations demonstrate that Gow Lake is actually a transitional impact structure, making it one of only two identified on Earth. Despite its age, a well-preserved sequence of crater-fill impactites is preserved on Calder Island in the middle of Gow Lake. From the base upward, this stratigraphy is parautochthonous target rock, lithic impact breccia, clast-rich impact melt rock, red clast-poor impact melt rock, and green clast-poor impact melt rocks. Discontinuous lenses of impact melt-bearing breccia also occur near the top of the red impact melt rocks and in the uppermost green impact melt rocks. The vitric particles in these breccias display irregular and contorted outlines. This, together with their setting within crater-fill melt rocks, is indicative of an origin as flows within the transient cavity and not an airborne mode of origin. Following impact, a hydrothermal system was initiated, which resulted in alteration of the crater-fill impactites. Major alteration phases are nontronite clay, K-feldspar, and quartz. 相似文献