首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1865篇
  免费   84篇
  国内免费   51篇
测绘学   59篇
大气科学   136篇
地球物理   433篇
地质学   681篇
海洋学   118篇
天文学   418篇
综合类   11篇
自然地理   144篇
  2024年   10篇
  2023年   14篇
  2022年   10篇
  2021年   40篇
  2020年   44篇
  2019年   41篇
  2018年   82篇
  2017年   68篇
  2016年   79篇
  2015年   74篇
  2014年   82篇
  2013年   114篇
  2012年   70篇
  2011年   102篇
  2010年   82篇
  2009年   92篇
  2008年   89篇
  2007年   91篇
  2006年   77篇
  2005年   60篇
  2004年   64篇
  2003年   49篇
  2002年   48篇
  2001年   36篇
  2000年   47篇
  1999年   34篇
  1998年   24篇
  1997年   23篇
  1996年   19篇
  1995年   11篇
  1994年   13篇
  1993年   12篇
  1992年   15篇
  1991年   14篇
  1990年   14篇
  1989年   14篇
  1988年   13篇
  1987年   20篇
  1986年   11篇
  1985年   17篇
  1984年   12篇
  1983年   21篇
  1982年   10篇
  1981年   10篇
  1980年   8篇
  1979年   8篇
  1978年   10篇
  1976年   7篇
  1974年   6篇
  1973年   6篇
排序方式: 共有2000条查询结果,搜索用时 11 毫秒
301.
Hydrous K-rich kimberlite-like systems are studied experimentally at 5.5–7.5 GPa and 1200–1450?°C in terms of phase relations and conditions for formation and stability of phlogopite. The starting samples are phlogopite–carbonatite–phlogopite sandwiches and harzburgite–carbonatite mixtures consisting of Ol?+?Grt?+?Cpx?+?L (±Opx), according to the previous experimental results obtained at the same PT parameters but in water-free systems. Carbonatite is represented by a K- and Ca-rich composition that may form at the top of a slab. In the presence of carbonatitic melt, phlogopite can partly melt in a peritectic reaction at 5.5 GPa and 1200–1350?°C, as well as at 6.3–7.0 GPa and 1200?°C: 2Phl?+?CaCO3 (L)?Cpx?+?Ol?+?Grt?+?K2CO3 (L)?+?2H2O (L). Synthesis of phlogopite at 5.5 GPa and 1200–1350?°C, with an initial mixture of H2O-bearing harzburgite and carbonatite, demonstrates experimentally that equilibrium in this reaction can be shifted from right to left. Therefore, phlogopite can equilibrate with ultrapotassic carbonate–silicate melts in a?≥?150?°C region between 1200 and 1350?°C at 5.5 GPa. On the other hand, it can exist but cannot nucleate spontaneously and crystallize in the presence of such melts in quite a large pressure range in experiments at 6.3–7.0 GPa and 1200?°C. Thus, phlogopite can result from metasomatism of peridotite at the base of continental lithospheric mantle (CLM) by ultrapotassic carbonatite agents at depths shallower than 180–195 km, which creates a mechanism of water retaining in CLM. Kimberlite formation can begin at 5.5 GPa and 1350?°C in a phlogopite-bearing peridotite source generating a hydrous carbonate–silicate melt with 10–15 wt% SiO2, Ca# from 45 to 60, and high K enrichment. Upon further heating to 1450?°C due to the effect of a mantle plume at the CLM base, phlogopite disappears and a kimberlite-like melt forms with SiO2 to 20 wt% and Ca#?=?35–40.  相似文献   
302.
A wavetrain of high-frequency (HF) P waves from a large earthquake, when recorded at a distant station, looks like a segment of modulated noise, with its duration close to the duration of rupture. These wavetrains, with their bursts and fadings, look much more intermittent than a segment of common stationary random noise. We try to describe quantitatively this bursty behavior. To this end, variogram and spectral analyses are applied to time histories of P-wave envelopes (squared-amplitude or instant-power signals) in six HF bands of 1-Hz width. Nine M w = 7.6–9.2 earthquakes were examined, using, in total, 232 records and 992 single-band traces. Variograms of integrated instant power are approximately linear on a log–log scale, indicating that the correlation structure of the instant-power signal is approximately self-similar. Also, estimates of the power spectrum of the instant-power signal look approximately linear on a log–log scale. Log–log slopes of the variograms and spectra deliver estimates of the Hurst exponent H that are mostly in the range 0.6–0.9, markedly above the value H = 0.5 of uncorrelated (white-noise) signals. The preferred estimate over the entire data set is H = 0.83, still, this estimate may include some bias, and must be treated as preliminary. The inter-event scatter of H estimates is about 0.04, reflecting individual event-to-event variations of H. Many of the average log–log spectral plots show slight concavity that perturbs the approximately linear slope; this is a secondary effect that seems to be mostly related to the limited bandwidth of the data. Evidence is given in support of the idea that the observed approximately self-similar correlation structure of the P-wave envelope originates in a similar structure of the body wave instant-power signal radiated by the source, so that the propagation-related distortions can be regarded as limited. The facts presented suggest that the space–time organization of the earthquake rupture process is multiscaled and bears significant fractal features; it deviates from the brittle-crack model with its two well-separated characteristic scales. Phenomenologically, the high-frequency body-wave radiation from an earthquake source can be thought of as a product of stationary noise and the square root of a positive random envelope function with a power-law spectrum. From the viewpoint of applications, the self-similarity of body wave envelopes provides a useful constraint for earthquake source models used to simulate strong ground motions.  相似文献   
303.
We describe the space–time distribution of the pulsed electric field in the middle atmosphere above a positive Γ-shaped lightning stroke. The channel of such a discharge contains a vertical and a horizontal section. The current wave moves initially vertically and then turns horizontally so that radiation appears from the vertical electric dipole followed by that from the horizontal dipole. Combined with reflection from the perfectly conducting ground, the source provides three subsequent pulses in the atmosphere, with the lag being determined by the finite velocity of the current wave in the Γ-shaped stroke. The pulses are reproduced by reflections from the air-ground and the air-ionosphere interfaces and the waveform resembles the M-component, which is often noted in the negative strokes (e.g. Yashunin et al., J Geophys Res 112:D10109, 2007). The non-stationary fine structure appears in the spatial distribution of electric field, which persists for 2 ms or even more and exceeds the runaway electron threshold. Estimates support the idea of free electron bunching in the mesosphere by the pulsed electric field. Focusing may occur about 10 km away from the point of electron- field interaction; it is delayed by a few ms from the moment of interaction. The data presented might be helpful in realistic modeling of the red sprite formation.  相似文献   
304.
We derive strong ground-motion relations for horizontal components of pseudo-acceleration response spectra from Mexican interplate earthquakes at rock sites (NEHRP B class) in the forearc region. The functional form is obtained from the analytical solution of a circular finite-source model. For the regression analysis we use a recently proposed multivariate Bayesian technique. The resulting model has similar accuracy as those models derived from regional and worldwide subduction-zone databases. However, there are significant differences in the estimations computed from our model and other models. First, our results reveal that attenuation in Mexico tends to be stronger than that of worldwide relations, especially for large events. Second, our model predicts ground motions for large earthquakes at close distances to the source that are considerably larger than the estimations of global models. Lack of data in this range makes it difficult to identify the most appropriate model for this scenario. Nevertheless, according to the available data at the city of Acapulco, our model seems to estimate seismic hazard more adequately than the other models. These new relations may be useful in computing seismic hazard for the Mexican forearc region, where no similar equations had been yet proposed.  相似文献   
305.
The objective of this study is to analyse adaptable debris-flow impact models, which are very important for mitigation measurements and buildings using their sphere of influence. For this reason, 16 debris-flow experiments, on a small-scale modelling approach, were performed. Impact forces were measured with a force plate panel, consisting of 24 aluminium devices, coaxially mounted with resistance strain gauges. Flow velocities, flow heights as well as horizontal impact forces were sampled with a frequency of 2.4 kHz. Sub datasets of sampled raw force data were defined by applying an average median filter, a low-pass filter routine. Further, estimated peak pressure values as well as empirical coefficients of hydraulic impact models were compared, and the influence of signal processing is discussed.  相似文献   
306.
Water temperature dynamics in High Arctic river basins   总被引:2,自引:0,他引:2  
Despite the high sensitivity of polar regions to climate change and the strong influence of temperature upon ecosystem processes, contemporary understanding of water temperature dynamics in Arctic river systems is limited. This research gap was addressed by exploring high‐resolution water column thermal regimes for glacier‐fed and non‐glacial rivers at eight sites across Svalbard during the 2010 melt season. Mean water column temperatures in glacier‐fed rivers (0.3–3.2 °C) were lowest and least variable near the glacier terminus but increased downstream (0.7–2.3 °C km–1). Non‐glacial rivers, where discharge was sourced primarily from snowmelt runoff, were warmer (mean: 2.9–5.7 °C) and more variable, indicating increased water residence times in shallow alluvial zones and increased potential for atmospheric influence. Mean summer water temperature and the magnitude of daily thermal variation were similar to those of some Alaskan Arctic rivers but low at all sites when compared with alpine glacierized environments at lower latitudes. Thermal regimes were correlated strongly (p < 0.01) with incoming short‐wave radiation, air temperature, and river discharge. Principal drivers of thermal variability were inferred to be (i) water source (i.e. glacier melt, snowmelt, groundwater); (ii) exposure time to the atmosphere; (iii) prevailing meteorological conditions; (iv) river discharge; (v) runoff interaction with permafrost and buried ice; and (vi) basin‐specific geomorphological features (e.g. channel morphology). These results provide insight into the potential changes in high‐latitude river systems in the context of projected warming in polar regions. We hypothesize that warmer and more variable temperature regimes may prevail in the future as the proportion of bulk discharge sourced from glacial meltwater declines and rivers undergo a progressive shift towards snow water and groundwater sources. Importantly, such changes could have implications for aquatic species diversity and abundance and influence rates of ecosystem functioning in high‐latitude river systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
307.
The main reasons for a breach of trouble-free operation of the subgrade are the different kinds of deformation, such as train load impact on subgrade surface, loss of stability to subgrade slope, weight of embankment on the base, and partial or complete failure of the railway track due to frost heaving. This paper gives a summary of deformation analysis methods being developed in Russia to estimate the operating conditions of the railway subgrade.  相似文献   
308.
309.
Earthflow‐type landslides are persistent natural hazards having deep socio‐economic and environmental consequences. They have significantly contributed to the geomorphic evolution of mountainous slopes in Europe since the Late Glacial. An understanding of their complex kinematics is crucial to better constrain the processes governing their occurrence and mobility. In this work we explored the possibility to quantify displacement vectors on a spatially distributed basis and to quantify volumetric transfer at the slope scale with regard to a large flow‐type landslide located in the northern Apennines of Italy. For this purpose we applied digital image correlation (DIC) and digital elevation model differencing (DEMoD) techniques to multi‐temporal airborne LiDAR surveys of 2006, 2007 and 2009. The DIC was applied to greyscale slope gradient maps retrieved after precise co‐registration of LiDAR surveys. Thereby, movement patterns over various sectors of the landslide were reconstructed and quantified, most notably up to 20 m in the head zone, up to 51 m in the lower main track, and up to about 27 m at the landslide toe. The DEMoD analysis revealed significant mass transfer from the source to the tracks and toe zone, with the upper flow tracks acting as temporal storage of large amounts of material. The mass balance indicated that significant amounts of advancing landslide debris were eroded by a local stream. An integrated analysis of DEMoD and DIC results allowed for a discussion of governing processes, such as the transition from slide to flow, the influence of underlying topography on earthflow mobility, and the role of undrained loading as a mechanism of toe zone reactivation. In conclusion, the successful application of DIC and DEMoD to the case study underlines the added value of high‐resolution DEMs in the analysis of earthflow kinematics toward a better understanding of their role in the geomorphic evolution of slopes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
310.
Abstract

Small dams fragment river landscapes, disrupting channel connectivity and impacting water quality and quantity. Although they impound volumetrically less total water than large dams, the ubiquity of small dams suggests their cumulative impacts could be significant. Documenting the distribution and characteristics of small dams is necessary to understanding and mitigating their impacts. In this study, we compare datasets of small dams in Oregon, compile a new comprehensive dataset, and document geographic variations in small dam distributions between different ecoregions. We used Oregon Water Resources Department dam and Oregon Department of Fish and Wildlife fish passage barrier datasets to compare dam heights and contributing drainage areas between different ecoregions. Over 61% of Oregon’s land area is above one or more small dam. We highlight the location of Oregon’s small dams at valley margins, transition zones between flat plains and mountains, and areas of high population density. Given the hidden nature of small dams, evaluation of small dam impacts using public imagery is not effective. However, knowledge of small dam distributions given their association with landforms can aid in finding unrecorded dams, assessing approaches for evaluating their geomorphic impacts, and informing their management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号