首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1761篇
  免费   83篇
  国内免费   50篇
测绘学   59篇
大气科学   151篇
地球物理   375篇
地质学   621篇
海洋学   122篇
天文学   413篇
综合类   11篇
自然地理   142篇
  2024年   10篇
  2023年   14篇
  2022年   10篇
  2021年   39篇
  2020年   43篇
  2019年   39篇
  2018年   81篇
  2017年   69篇
  2016年   81篇
  2015年   75篇
  2014年   80篇
  2013年   115篇
  2012年   68篇
  2011年   100篇
  2010年   83篇
  2009年   92篇
  2008年   91篇
  2007年   94篇
  2006年   79篇
  2005年   62篇
  2004年   65篇
  2003年   51篇
  2002年   50篇
  2001年   42篇
  2000年   49篇
  1999年   34篇
  1998年   21篇
  1997年   23篇
  1996年   19篇
  1995年   12篇
  1994年   13篇
  1993年   11篇
  1992年   16篇
  1991年   9篇
  1990年   10篇
  1989年   6篇
  1988年   6篇
  1987年   7篇
  1986年   10篇
  1985年   13篇
  1984年   7篇
  1983年   9篇
  1981年   7篇
  1980年   7篇
  1979年   8篇
  1978年   8篇
  1977年   5篇
  1976年   5篇
  1974年   5篇
  1973年   5篇
排序方式: 共有1894条查询结果,搜索用时 15 毫秒
41.
Paleoclimatic settings have been reconstructed for the Campanian using original oxygen-isotopic analyses of well-preserved molluskan and foraminifera shells from Russian Far East, Hokkaido, USA, Belgium and some DSDP holes (95, 98, 102, 390A, and 392A) in North Atlantic. Early Early Campanian climatic optimum has been recognized from data on high bottom shelf water paleotemperatures in middle latitudes of both the western circum-Pacific (to 24.2°C) and the eastern circum-Pacific (to 26.4°C) areas and high bottom shallow water paleotemperatures in high latitudes of the Koryak Upland (22.4–25.5°C), which agrees with the data on the Campanian Barykovskaya flora in high latitudes (Golovneva and Herman, 1998) and Jonker flora and its equivalents in middle latitudes. Judging from the data on comparatively high bottom shallow water paleotemperature values in high latitudes, South Alaska (19.4°C) and the Koryak Upland (22.4–25.5°C), we also expect Latest Campanian temperature maximum, which has not been confirmed, however, for low and middle latitudes by neither of isotopic nor paleobotanic data now. Main climatic tendency during the Campanian (with the exception of Latest Campanian) has been learned from isotopic composition of Campanian aragonitic ammonoid shells from the Hokkaido-South Sakhalin (Krilyon) marine basin. In contrary to Huber’s et al. (2002) assumption, we expect warm greenhouse conditions during the most part of the Campanian.  相似文献   
42.
Recent sediments from two alpine lakes (> 3300 m asl) in the Colorado Front Range (USA) register marked and near-synchronous changes that are believed to represent ecological responses to enhanced atmospheric deposition of fixed nitrogen from anthropogenic sources. Directional shifts in sediment proxies include greater representations of mesotrophic diatoms and increasingly depleted 15N values. These trends are particularly pronounced since ~ 1950, and appear to chronicle lake responses to excess N derived from agricultural and industrial sources to the east. The rate and magnitude of recent ecological changes far exceed the context of natural variability, as inferred from comparative analyses of a long core capturingthe entire 14,000-year postglacial history of one of the lakes. Nitrogen deposition to these seemingly pristine natural areas has resulted in subtle but detectable limnological changes that likely represent the beginning of a stronger response to nitrogen enrichment.  相似文献   
43.
Burned slopes are susceptible to runoff-generated debris flows in the years following wildfire due to reductions in vegetation cover and soil infiltration capacity. Debris flows can pose serious threats to downstream communities, so quantifying variations in flow properties along debris-flow runout paths is needed to improve both conceptual and quantitative models of debris-flow behaviour to help anticipate and mitigate the risk associated with these events. Changes in flow properties along the runout paths of the runoff-generated debris flows that follow fire may be particularly dramatic, since they initiate when a water-dominated flow rapidly entrains sediment and later transition back to a water-dominated flow once they reach greater drainage areas and lower slopes. Here, we study the properties of a debris flow that initiated 1 month following the 2022 Pipeline Fire in northern Arizona, USA. We categorized flow type into two classes, granular debris flow and muddy debris flow, along the 7-km runout path and examined how flow properties varied between the phases. Changes in channel gradient and confinement likely facilitated the transition between the flow phases, which were characterized by significant differences in maximum clast size, but similar clay content and fine fractions. We also found that the volume and runout distance of the debris flow were 28 and six times greater, respectively, than that of a debris flow that initiated in the same watershed following a fire 12 years earlier. We attribute these differences to the combined effects of two high-severity fires, suggesting that consideration of recent fire history could improve post-fire debris-flow hazard assessments. Results of this study provide quantitative constraints on changes in post-fire debris-flow properties along a runout path. Data collected in this study add to a small number of debris-flow inundation datasets that can be used to test runout models in post-fire settings.  相似文献   
44.
Graphical Interpretation of Water-Quality Data   总被引:12,自引:0,他引:12  
  相似文献   
45.
Transient aragonite seas occurred in the early Cambrian but several models suggest the late Cambrian was a time of calcite seas. Here, evidence is presented from the Andam Group, Huqf High, Oman (Gondwana) that suggests a transient Furongian (late Cambrian) aragonite sea, characterized by the precipitation of aragonite and high‐Mg calcite ooids and aragonite isopachous, fibrous, cements. Stable carbon isotope data suggest that precipitation occurred just before and during the SPICE (Steptoean Positive Carbonate Isotope Excursion). Aragonite and high‐Mg calcite precipitation can be accounted for if mMg:Ca ratios were around 1.2 given the very high atmospheric CO2 at that time and if precipitation occurred in warm waters associated with the SPICE. This, together with reported occurrences of early Furongian aragonite ooids from various locations in North America (Laurentia), suggests that aragonite and high‐Mg calcite precipitation from seawater may have been more than just a local phenomenon.  相似文献   
46.
Arctic river basins are amongst the most vulnerable to climate change. However, there is currently limited knowledge of the hydrological processes that govern flow dynamics in Arctic river basins. We address this research gap using natural hydrochemical and isotopic tracers to identify water sources that contributed to runoff in river basins spanning a gradient of glacierization (0–61%) in Svalbard during summer 2010 and 2011. Spatially distinct hydrological processes operating over diurnal, weekly and seasonal timescales were characterized by river hydrochemistry and isotopic composition. Two conceptual water sources (‘meltwater’ and ‘groundwater’) were identified and used as a basis for end‐member mixing analyses to assess seasonal and year‐to‐year variability in water source dynamics. In glacier‐fed rivers, meltwater dominated flows at all sites (typically >80%) with the highest contributions observed at the beginning of each study period in early July when snow cover was most extensive. Rivers in non‐glacierized basins were sourced initially from snowmelt but became increasingly dependent on groundwater inputs (up to 100% of total flow volume) by late summer. These hydrological changes were attributed to the depletion of snowpacks and enhanced soil water storage capacity as the active layer expanded throughout each melt season. These findings provide insight into the processes that underpin water source dynamics in Arctic river systems and potential future changes in Arctic hydrology that might be expected under a changing climate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
47.
48.
In contrast to active tectonic settings, little is known about the potential feedback between surface processes and climate change in tectonically inactive cratonic regions. Here, we studied the driving forces of erosion and landscape evolution in the Kruger National Park in South Africa using cosmogenic nuclide dating. 10Be‐derived catchment‐wide erosion rates (~2 and ~10 mm ka?1) are similar in magnitude to erosion and rock uplift elsewhere in South Africa, suggesting that (1) rock uplift is solely the isostatic response to erosion and (2) the first‐order topography is likely of Cretaceous age. The topographic maturity is promoted by widespread exposure of rocks resistant to erosion. Our data, however, suggest that local variations in rock resistance lead to transient landscape changes, with local increases in relief and erosion rates.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号