首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   524篇
  免费   23篇
  国内免费   4篇
测绘学   12篇
大气科学   31篇
地球物理   131篇
地质学   191篇
海洋学   23篇
天文学   137篇
综合类   1篇
自然地理   25篇
  2023年   4篇
  2022年   6篇
  2021年   7篇
  2020年   12篇
  2019年   11篇
  2018年   24篇
  2017年   22篇
  2016年   37篇
  2015年   28篇
  2014年   36篇
  2013年   30篇
  2012年   29篇
  2011年   33篇
  2010年   25篇
  2009年   36篇
  2008年   34篇
  2007年   27篇
  2006年   22篇
  2005年   17篇
  2004年   16篇
  2003年   15篇
  2002年   10篇
  2001年   10篇
  2000年   7篇
  1999年   5篇
  1998年   5篇
  1997年   5篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1993年   9篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1986年   1篇
  1940年   2篇
  1939年   1篇
排序方式: 共有551条查询结果,搜索用时 109 毫秒
191.
Post-event Interferometric Synthetic Aperture Radar (InSAR) analysis on a stack of 45 C-band SAR images acquired by the ESA Sentinel-1 satellites from 9 October 2014 to 19 June 2017 allowed the identification of a clear precursory deformation signal for the Maoxian landslide (Mao County, Sichuan Province, China). The landslide occurred in the early morning of 24 June 2017 and killed more than 100 people in the village of Xinmo. Sentinel-1 images have been processed through an advanced multi-interferogram analysis capable of maximising the density of measurement points, generating ground deformation maps and displacement time series for an area of 460 km2 straddling the Minjiang River and the Songping Gully. InSAR data clearly show the precursors of the slope failure in the source area of the Maoxian landslide, with a maximum displacement rate detected of 27 mm/year along the line of sight of the satellite. Deformation time series of measurement points identified within the main scarp of the landslide exhibit an acceleration starting from April 2017. A detailed time series analysis leads to the classification of different deformation behaviours. The Fukuzono method for forecasting the time of failure appear to be applicable to the displacement data exhibiting progressive acceleration. Results suggest that satellite radar data, systematically acquired over large areas with short revisiting time, could be used not only as a tool for mapping unstable areas, but also for landslide monitoring, at least for some typologies of sliding phenomena.  相似文献   
192.
In the Zhouqu region (Gansu, China), landslide distribution and activity exploits geological weaknesses in the fault-controlled belt of low-grade metamorphic rocks of the Bailong valley and severely impacts lives and livelihoods in this region. Landslides reactivated by the Wenchuan 2008 earthquake and debris flows triggered by rainfall, such as the 2010 Zhouqu debris flow, have caused more than 1700 casualties and estimated economic losses of some US$0.4 billion. Earthflows presently cover some 79% of the total landslide area and have exerted a strong influence on landscape dynamics and evolution in this region. In this study, we use multi-temporal Advanced Land Observing Satellite and Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) data and time series interferometric synthetic aperture radar to investigate slow-moving landslides in a mountainous region with steep topography for the period December 2007–August 2010 using the Small Baseline Subsets (SBAS) technique. This enabled the identification of 11 active earthflows, 19 active landslides with deformation rates exceeding 100 mm/year and 20 new instabilities added into the pre-existing landslide inventory map. The activity of these earthflows and landslides exhibits seasonal variations and accelerated deformation following the Wenchuan earthquake. Time series analysis of the Suoertou earthflow reveals that seasonal velocity changes are characterized by comparatively rapid acceleration and gradual deceleration with distinct kinematic zones with different mean velocities, although velocity changes appear to occur synchronously along the landslide body over seasonal timescales. The observations suggest that the post-seismic effects (acceleration period) on landslide deformation last some 6–7 months.  相似文献   
193.
Mass fractions of Sn and In were determined in sixteen geological reference materials including basaltic/mafic (BCR‐2, BE‐N, BHVO‐1, BHVO‐2, BIR‐1, OKUM, W‐2, WS‐E), ultramafic (DTS‐2b, MUH‐1, PCC‐1, UB‐N) and felsic/sedimentary reference materials (AGV‐2, JA‐1, SdAR‐M2, SdAR‐H1). Extensive digestion and ion exchange separation tests were carried out in order to provide high yields (> 90% for Sn, > 85% for In), low total procedural blanks (~ 1 ng for Sn, < 3 pg for In) and low analytical uncertainties for the elements of interest in a variety of silicate sample matrices. Replicate analyses (= 2–13) of Sn–In mass fractions gave combined measurement uncertainties (2u) that were generally < 3% and in agreement with literature data, where available. We present the first high‐precision In data for reference materials OKUM (32.1 ± 1.5 ng g?1), DTS‐2b (2.03 ± 0.25 ng g?1), MUH‐1 (6.44 ± 0.30 ng g?1) and PCC‐1 (3.55 ± 0.35 ng g?1) as well as the first Sn data for MUH‐1 (0.057 ± 0.010 μg g?1) and DTS‐2b (0.623 ± 0.018 μg g?1).  相似文献   
194.
On June 24, 2017 (21:39 UTC, June 23rd), a catastrophic landslide occurred at Xinmo village of Mao County, Sichuan Province, China. Soon after the event, some research teams carried out field investigations in order to both support the emergency operations and to understand the failure mechanism and possible evolutionary scenarios. Based on further in-depth interpretation of high-resolution remote-sensing images and detailed field surveys, it is newly found that there are at least six old rockfall deposits in the source area that prove the historic activity of the landslide scarp. Seismic data of the event and morphological evidences along the slope indicate that the landslide was preceded by a significant rockfall. Mechanical calculations show that the surface force due to pore water was far less than the impact force due to the rockfall. It means that the subsequent major rock avalanche was more likely due to the impact of the rockfall on the rock slope below, which broke the rock bridges and caused drop of shear resistance along the fractures. According to these new understandings, a different triggering mechanism for the landslide is proposed.  相似文献   
195.
Inversion methods that rely on measurements of the hydraulic head h cannot capture the fine-scale variability of the hydraulic properties of an aquifer. This is particularly true for direct inversion methods, which have the further limitation of providing only deterministic results. On the other hand, stochastic simulation methods can reproduce the fine-scale heterogeneity but cannot directly incorporate information about the hydraulic gradient. In this work, a hybrid approach is proposed to join a direct inversion method (the comparison model method, CMM) and multiple-point statistics (MPS), for determination of a hydraulic transmissivity field T from a map of a reference hydraulic head \(h^\mathrm {(ref)}\) and a prior model of the heterogeneity (a training image). The hybrid approach was tested and compared with pure MPS and pure CMM approaches in a synthetic case study. Also, sensitivity analysis was performed to test the importance of the acceptance threshold \(\delta \), a simulation parameter that allows one to tune the influence of \(h^\mathrm {(ref)}\) on the final results. The transmissivity fields T obtained using the hybrid approach take into account information coming from the hydraulic gradient while simultaneously reproducing some of the fine-scale features provided by the training image. Furthermore, many realizations of T can be obtained thanks to the stochasticity of MPS. Nevertheless, it is not straightforward to exploit the correlation between the T maps provided by the CMM and the prior model introduced by the training image, because the former depends on the boundary conditions and flow settings. Another drawback is the growing number of simulation parameters introduced when combining two diverse methods. At the same time, this growing complexity opens new possibilities that deserve further investigation.  相似文献   
196.
Natural Hazards - Persistent Scatterers Interferometry (PSI) techniques are widely employed in geosciences to detect and monitor landslides with high accuracy over large areas, but they also suffer...  相似文献   
197.
We present new partition coefficients for various trace elements including Cl between olivine, pyroxenes, amphibole and coexisting chlorine-bearing aqueous fluid in a series of high-pressure experiments at 2 GPa between 900 and 1,300 °C in natural and synthetic systems. Diamond aggregates were added to the experimental capsule set-up in order to separate the fluid from the solid residue and enable in situ analysis of the quenched solute by LA–ICP–MS. The chlorine and fluorine contents in mantle minerals were measured by electron microprobe, and the nature of OH defects was investigated by infrared spectroscopy. Furthermore, a fluorine-rich olivine from one selected sample was investigated by TEM. Results reveal average Cl concentrations in olivine and pyroxenes around 20 ppm and up to 900 ppm F in olivine, making olivine an important repository of halogens in the mantle. Chlorine is always incompatible with Cl partition coefficients D Cl olivine/fluid varying between 10?5 and 10?3, whereas D Cl orthopyroxene/fluid and D Cl clinopyroxene/fluid are ~10?4 and D Cl amphibole/fluid is ~5 × 10?3. Furthermore, partitioning results for incompatible trace element show that compatibilities of trace elements are generally ordered as D amph/fluid ≈ D cpx/fluid > D opx/fluid > D ol/fluid but that D mineral/fluid for Li and P is very similar for all observed silicate phases. Infrared spectra of olivine synthesized in a F-free Ti-bearing system show absorption bands at 3,525 and ~3,570 cm?1. In F ± TiO2-bearing systems, additional absorption bands appear at ~3,535, ~3,595, 3,640 and 3,670 cm?1. Absorption bands at ~3,530 and ~3,570 cm?1, previously assigned to humite-like point defects, profit from low synthesis temperatures and the presence of F. The presence of planar defects could not be proved by TEM investigations, but dislocations in the olivine lattice were observed and are suggested to be an important site for halogen incorporation in olivine.  相似文献   
198.
Modern fluvial meander plains exhibit complex planform transformations in response to meander‐bend expansion, downstream migration and rotation. These transformations exert a fundamental control on lithology and reservoir properties, yet their stratigraphic record has been poorly evaluated in ancient examples due to the lack of extensive three‐dimensional exposures. Here, a unique exhumed meander plain exposed to the north of Scarborough (Yorkshire, UK) is analysed in terms of architecture and morphodynamics, with the aim of developing a comprehensive model of facies distribution. The studied outcrop comprises tidal platforms and adjacent cliffs, where the depositional architecture of un‐tilted deposits was assessed on planform and vertical sections, respectively. In its broader perspective, this study demonstrates the potential of architectural mapping of extensive planform exposures for the reconstruction of ancient fluvial morphodynamics. The studied exhumed meander plain is part of the Scalby Formation of the Ravenscar Group, and originally drained small coastal incised valleys within the Jurassic Cleveland Basin. The meander plain is subdivided into two storeys that contain in‐channel and overbank architectural elements. In‐channel elements comprise expansional and downstream‐migrating point bars, point‐bar tails and channel fills. Overbank elements comprise crevasse complexes, levées, floodplain fines and lake fills. The evolution of the point bars played a significant role in dictating preserved facies distributions, with high flood‐stage nucleation and accretion of meander scrolls later reworked during waning flood‐stages. At a larger scale, meander belt morphodynamics were also a function of valley confinement and contrasts in substrate erodibility. Progressive valley infilling decreased the valley confinement, promoting the upward transition from prevalently downstream migrating to expansional meander belts, a transition associated with enhanced preservation of overbank elements. Strikingly similar relations between valley confinement, meander‐bend transformations and overbank preservation are observed in small modern meandering streams such as the Beaver River of the Canadian prairies and the Powder River of Montana (USA).  相似文献   
199.
The elastic properties of six silicate garnet end members, among the most important rock-forming minerals, are investigated here for the first time via accurate ab initio theoretical simulations. The Crystal program is used, which works within periodic boundary conditions and allows for all-electron basis sets to be adopted. From the computed elastic tensor, Christoffel’s equation is solved along a set of crystallographic directions in order to fully characterize the seismic wave velocity anisotropy in such materials. Polycrystalline isotropic aggregate elastic properties are derived from the computed single-crystal data via the Voigt-Reuss-Hill averaging procedure. Transferability of the elastic properties from end members to their solid solutions with different chemical compositions is also addressed.  相似文献   
200.
Water inflows are a major challenge in tunnelling and particularly difficult to predict in geological settings consisting of heterogeneous sedimentary rock formations with complex tectonic structure. For a high-speed railway line between Bologna and Florence (Italy), a series of seven railway tunnels was drilled through turbiditic formations, ranging from pelitic rocks with thin arenitic layers over sequences including thick-bedded sandstone to calcareous rocks showing chemical dissolution phenomena (karstification). The tunnels were built as draining tunnels and caused significant impacts, such as drying of springs and base-flow losses at mountain streams. A comprehensive hydrological monitoring programme and four multi-tracer test were done, focusing on four sections of the tunnel system. The tracer tests delivered unprecedented data on groundwater flow and transport in turbiditic aquifers and made it possible to better characterize the differential impacts of tunnel drainage along a geological gradient. The impact radius is 200 m in the thin-bedded sequences but reaches 2.3–4.0 km in calcareous and thick-bedded arenitic turbidites. Linear flow velocities, as determined from the peaks of the tracer breakthrough curves, range from 3.6 m/day in the thin-bedded turbidites to 39 m/day in the calcareous rocks (average values from the four test sites). At several places, discrete fault zones were identified as main hydraulic pathways between impacted streams and draining tunnels. This case shows that ignoring the hydrogeological conditions in construction projects can cause terrible damage, and the study presents an approach to better predict hydraulic impacts of draining tunnels in complex sedimentary rock settings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号