首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   501篇
  免费   16篇
  国内免费   10篇
测绘学   2篇
大气科学   15篇
地球物理   117篇
地质学   166篇
海洋学   121篇
天文学   79篇
综合类   5篇
自然地理   22篇
  2023年   4篇
  2021年   9篇
  2020年   6篇
  2019年   25篇
  2018年   9篇
  2017年   9篇
  2016年   15篇
  2015年   3篇
  2014年   23篇
  2013年   21篇
  2012年   12篇
  2011年   15篇
  2010年   20篇
  2009年   24篇
  2008年   24篇
  2007年   31篇
  2006年   26篇
  2005年   30篇
  2004年   10篇
  2003年   15篇
  2002年   7篇
  2001年   13篇
  2000年   10篇
  1999年   18篇
  1998年   12篇
  1997年   7篇
  1996年   8篇
  1995年   5篇
  1994年   6篇
  1993年   6篇
  1992年   4篇
  1991年   2篇
  1990年   5篇
  1989年   3篇
  1988年   5篇
  1987年   9篇
  1986年   8篇
  1985年   8篇
  1984年   6篇
  1983年   9篇
  1982年   5篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1978年   9篇
  1977年   4篇
  1976年   2篇
  1974年   3篇
  1972年   2篇
  1970年   2篇
排序方式: 共有527条查询结果,搜索用时 250 毫秒
521.
Geochemical and mineralogical studies were conducted on the 12-m-thick weathering profile of the Kata Beach granite in Phuket, Thailand, in order to reveal the transport and adsorption of rare earth elements (REE) related to the ion-adsorption type mineralization. The parent rock is ilmenite-series biotite granite with transitional characteristics from I type to S type, abundant in REE (592 ppm). REE are contained dominantly in fluorocarbonate as well as in allanite, titanite, apatite, and zircon. The chondrite-normalized REE pattern of the parent granite indicates enrichment of LREE relative to HREE and no significant Ce anomaly. The upper part of the weathering profile from the surface to 4.5 m depth is mostly characterized by positive Ce anomaly, showing lower REE contents ranging from 174 to 548 ppm and lower percentages of adsorbed REE from 34% to 68% compared with the parent granite. In contrast, the lower part of the profile from 4.5 to 12 m depth is characterized by negative Ce anomaly, showing higher REE contents ranging from 578 to 1,084 ppm and higher percentages from 53% to 85%. The negative Ce anomaly and enrichment of REE in the lower part of the profile suggest that acidic soil water in an oxidizing condition in the upper part mostly immobilized Ce4+ as CeO2 and transported REE3+ downward to the lower part of the profile. The transported REE3+ were adsorbed onto weathering products or distributed to secondary minerals such as rhabdophane. The immobilization of REE results from the increase of pH due to the contact with higher pH groundwater. Since the majority of REE in the weathered granite are present in the ion-adsorption fraction with negative Ce anomaly, the percentages of adsorbed REE are positively correlated with the whole-rock negative Ce anomaly. The result of this study suggests that the ion-adsorption type REE mineralization is identified by the occurrence of easily soluble REE fluorocarbonate and whole-rock negative Ce anomaly of weathered granite. Although fractionation of REE in weathered granite is controlled by the occurrence of REE-bearing minerals and adsorption by weathering products, the ion-adsorption fraction tends to be enriched in LREE relative to weathered granite.  相似文献   
522.
Variations in bulk Mg/Si ratios in the various groups of chondritic meteorites indicate that Mg/Si fractionation occurred in the primitive solar nebula. Enstatite (MgSiO3) evaporates incongruently forming forsterite (Mg2SiO4) as an evaporation residue; therefore, evaporation of enstatite produces Mg/Si variations in solid (Mg-rich) and gas (Si-rich) and must be considered as a probable process responsible for Mg/Si fractionation recorded in chondrites. To understand the evaporation kinetics of enstatite, incongruent evaporation experiments on enstatite single crystals have been carried out in vacuum and in hydrogen gas at temperatures of 1300 to 1500°C. A polycrystalline forsterite layer is formed on the surface of enstatite by preferential evaporation of the SiO2 component, both in vacuum and in hydrogen gas. The thickness of the forsterite layer in vacuum increases with time in the early stage of evaporation and later the thickness of the forsterite layer remains constant (several microns). This is due to the change in the rate limiting process from surface reaction plus nucleation and growth to diffusion in the surface forsterite layer. The activation energy of the diffusion-controlled evaporation rate constant of enstatite is 457 (±58) kJ/mol. A thinner forsterite layer is formed on the surface of enstatite in hydrogen gas than in vacuum. Evaporation of enstatite in hydrogen gas is also considered to be controlled by diffusion of ions through the forsterite layer. The thin forsterite layer formed in hydrogen gas is ascribed to the enhanced evaporation rate of forsterite in the presence of hydrogen gas.The results are applied to incongruent evaporation under the solar nebular conditions. The steady thickness of the forsterite of nebular pressure-temperature conditions is estimated to be submicron because of the enhanced evaporation rate of forsterite under hydrogen-rich nebular conditions if evaporated gases are taken away immediately and no back reaction occurs (an open system). Because enstatite grains in the solar nebula would be comparable to the estimated steady thickness of forsterite, evaporation of such enstatite grains under kinetic conditions could play an important role in producing variations in Mg/Si ratios between solid and gas in the solar nebula.  相似文献   
523.
The Southwest prospect is located at the southwestern periphery of the Sto. Tomas II porphyry copper–gold deposit in the Baguio District, northwestern Luzon, Philippines. The Southwest prospect hosts a copper‐gold mineralization related to a complex of porphyry intrusions, breccia facies, and overlapping porphyry‐type veinlets emplaced within the basement Pugo metavolcanics rocks and conglomerates of the Zigzag Formation. The occurrences of porphyry‐type veinlets and potassic alteration hosted in the complex are thought to be indications of the presence of blind porphyry deposits within the Sto. Tomas II vicinity. The complex is composed of at least four broadly mineralogically similar dioritic intrusive rocks that vary in texture and alteration type and intensity. These intrusions were accompanied with at least five breccia facies that were formed by the explosive brecciation, induced by the magmatic–hydrothermal processes and phreatomagmatic activities during the emplacement of the various intrusions. Hydrothermal alteration assemblages consisting of potassic, chlorite–magnetite, propylitic and sericite–chlorite alteration, and contemporaneous veinlet types were developed on the host rocks. Elevated copper and gold grades correspond to (a) chalcopyrite–bornite assemblage in the potassic alteration in the syn‐mineralization early‐mineralization diorite (EMD) and contemporaneous veinlets and (b) chalcopyrite‐rich mineralization associated with the chalcopyrite–magnetite–chlorite–actinolite±sericite veinlets contemporaneous with the chlorite–magnetite alteration. Erratic remarkable concentrations of gold were also present in the late‐mineralization Late Diorite (LD). High XMg of calcic amphiboles (>0.60) in the intrusive rocks indicate that the magmas have been oxidizing since the early stages of crystallization, while a gap in the composition of Al between the rim and the cores of the calcic amphiboles in the EMD and LD indicate decompression at some point during the crystallization of these intrusive rocks. Fluid inclusion microthermometry suggests the trapping of immiscible fluids that formed the potassic alteration, associated ore mineralization, and sheeted quartz veinlets. The corresponding formation conditions of the shallower and deeper quartz veinlets were estimated at pressures of 50 and 30 MPa and temperatures of 554 and 436°C at depths of 1.9 and 1.1 km. Temperature data from the chlorite indicate that the chalcopyrite‐rich mineralization associated with the chlorite–magnetite alteration was formed at a much lower temperature (ca. 290°C) than the potassic alteration. Evidence from the vein offsetting matrix suggests multiple intrusions within the EMD, despite the K‐Ar ages of the potassic alteration in EMD and hornblende in the LD of about the same age at 3.5 ± 0.3 Ma. The K‐Ar age of the potassic alteration was likely to be thermally reset as a result of the overprinting hydrothermal alteration. The constrained K‐Ar ages also indicate earlier formed intrusive rocks in the Southwest prospect, possibly coeval to the earliest “dark diorite” intrusion in the Sto. Tomas II deposit. In addition, the range of δ34S of sulfide minerals from +1.8‰ to +5.1‰ in the Southwest prospect closely overlaps with the rest of the porphyry copper and epithermal deposits in the Sto. Tomas II deposit and its vicinity. This indicates that the sulfides may have formed from a homogeneous source of the porphyry copper deposits and epithermal deposits in the Sto. Tomas II orebody and its vicinity. The evidence presented in this work proves that the porphyry copper‐type veinlets and the adjacent potassic alteration in the Southwest prospect are formed earlier and at a shallower level in contrast with the other porphyry deposits in the Baguio District.  相似文献   
524.
The Influence Of Urban Canopy Configuration On Urban Albedo   总被引:6,自引:0,他引:6  
We propose a calculation method for shortwave radiation flux and longwave radiation flux within the urban canopy and investigate the influence of urban canopy configuration on net radiation flux. In the assumed urban configuration, buildings of equal size are arranged in a regular lattice within the urban canopy. The net shortwave radiation flux and longwave radiation flux within the urban canopy were calculated by the photon tracking method based on the Monte Carlo method. The albedo value obtained by this method shows close agreement with experimental data, and the average sky view factor shows almost perfect agreement with the theoretical value. Moreover, we calculated the urban albedo for the urban canopy configuration including roads and building height distribution.%Moreover, we calculated net radiation within the urban canopy in %consideration of roads and building height distribution.We found that the sky view factor of the ground surface is high when building coverage is low, building height is low, open space by roads exists, and building height is non-uniform. Moreover, we found that the albedo value is high when building height is small, open space by roads is wide, and building height is uniform. The albedo value was found to vary in a complicated manner with change in building coverage.  相似文献   
525.
In this study we examine the calibration of wind speed measured by a sonic anemometer, with an orthogonal probe configuration, with regard to the approximation of the flow angle, and the wind-speed dependence of the flow attenuation attributed to the transducer shadow. The flow angle should be calculated by the iterative method when the attenuation is relatively high. For a probe manufactured by Kaijo Co. TR-61C, the wind-speed dependence of the transducer shadow effect is formulated from the results of the wind-tunnel experiment. Assuming the equation is applicable to field observations, significant errors possibly remain especially when the wind speed is low, and /or the angle between the flow vector and the sonic path is small, if the wind-speed dependence in measurement errors is neglected.  相似文献   
526.
The Utanobori gold deposit is a low‐sulfidation, epithermal vein‐type deposit located in northern Hokkaido, Japan. The deposit is hosted by conglomerate, sandstone, and tuff of the Middle to Late Miocene Esashi Formation. These rocks were hydrothermally altered. Silica sinters and quartz‐adularia veins are common in the deposit. The quartz‐adularia veins either contain a ginguro band, which corresponds to the main gold‐bearing vein (Type 1 Veins), or do not contain a ginguro band but contain minor adularia (Type 2 Veins). Type 1 Veins are divided into three stages with 12–14 substages. Ore minerals identified include electrum, naumannite, chlorargyrite, bromargyrite, an unidentified Fe‐Sb mineral, and an Fe‐(Sb)‐As mineral. These ore minerals formed in the main mineralization stages I (bands I‐b and I‐d) and II (band II‐a). Scanning electron microscopy with cathodoluminescence images show that cathodoluminescence‐dark microcrystalline quartz exhibiting colloform (ghost‐sphere) texture is closely associated with ore minerals in the Type 1 Vein and Type 2 Vein, and the Al and K contents of such quartz are commonly >1000 ppm. This indicates that the ore minerals were crystallized from alkaline, silica‐saturated fluids at temperatures <200°C, which initially deposited amorphous silica that was recrystallized to microcrystalline quartz. The average Au content of electrum is 52.5 at% Au (n = 10), 65.7 at% Au (n = 20), and 55.5 at% Au (n = 5) in bands I‐b, I‐d, and II‐a, respectively, of Type 1 Veins. The δ34SCDT values of two fine‐grained disseminated pyrites in the altered conglomerate and bedded tuff in the argillic altered zone are ?4.3 and ?4.2‰. Ar‐Ar dating on adularia yielded 13.6 ± 0.06 Ma, 13.6 ± 0.07 Ma, and 13.6 ± 0.06 Ma for the stages I, II, and III of the Type 1 Vein, respectively. K‐Ar ages determined on adularia in the silica sinter and on whole‐rock of glassy rhyolite of the Esashi Formation are 15.0 ± 0.4 Ma and 14.6 ± 0.4 Ma, respectively. These radiometric ages indicate that silica sinter associated with the rhyolitic volcanic rocks formed prior to the main gold mineralization.  相似文献   
527.
We present a methodological approach to detect heated soil on ancient sites, using magnetic measurements. The method is based on changes in magnetic signals of soil by heating. The following three types of soil were used for testing the method: silty soil (SS), weathered volcanic ash (WVA, = loam) and fairly fresh volcanic ash (VA) called Odori tephra. On heating above 250–600°C, the magnetic susceptibility and remanent magnetization intensity increased for the SS and WVA samples, reflecting chemical alteration of magnetic minerals (from goethites to magnetites through hematites). The VA sample showed no susceptibility change suggesting the absence of goethites within it. On heating below 250°C, only the intensities of all the samples increased. This is possibly due to acquisition of thermal remanent magnetization. The largest change of the magnetic signals was identified for the SS sample and the smallest one was seen for the VA sample. Therefore, the in situ susceptibility measurement, which is the nondestructive and indirect method, seems to be effective to detect heated soil for sites of aqueous deposits as the SS. On the other hand, for sites of aeolian deposits as the WVA (loam) and VA, the intensity measurement of collected soils seems to be the most reliable method to detect evidence of heating. The degree of the magnetic stability (coercivity) against progressive alternating-field demagnetization was also an important parameter, indicating whether the investigated soils were heated or unheated. © 1999 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号