首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   501篇
  免费   16篇
  国内免费   10篇
测绘学   2篇
大气科学   15篇
地球物理   117篇
地质学   166篇
海洋学   121篇
天文学   79篇
综合类   5篇
自然地理   22篇
  2023年   4篇
  2021年   9篇
  2020年   6篇
  2019年   25篇
  2018年   9篇
  2017年   9篇
  2016年   15篇
  2015年   3篇
  2014年   23篇
  2013年   21篇
  2012年   12篇
  2011年   15篇
  2010年   20篇
  2009年   24篇
  2008年   24篇
  2007年   31篇
  2006年   26篇
  2005年   30篇
  2004年   10篇
  2003年   15篇
  2002年   7篇
  2001年   13篇
  2000年   10篇
  1999年   18篇
  1998年   12篇
  1997年   7篇
  1996年   8篇
  1995年   5篇
  1994年   6篇
  1993年   6篇
  1992年   4篇
  1991年   2篇
  1990年   5篇
  1989年   3篇
  1988年   5篇
  1987年   9篇
  1986年   8篇
  1985年   8篇
  1984年   6篇
  1983年   9篇
  1982年   5篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1978年   9篇
  1977年   4篇
  1976年   2篇
  1974年   3篇
  1972年   2篇
  1970年   2篇
排序方式: 共有527条查询结果,搜索用时 15 毫秒
481.
The Salu Bulo prospect is one of the gold prospects in the Awak Mas project in the central part of the western province, Sulawesi, Indonesia. The gold mineralization is hosted by the meta‐sedimentary rocks intercalated with the meta‐volcanic and volcaniclastic rocks of the Latimojong Metamorphic Complex. The ores are approximately three meters thick, consisting of veins, stockwork, and breccias. The veins can be classified into three stages, namely, early, main, and late stages, and gold mineralization is related to the main stage. The mineral assemblage of the matrix of breccia and the veins are both composed of quartz, carbonate (mainly ankerite), and albite. High‐grade gold ores in the Salu Bulo prospect are accompanied by intense alteration, such as carbonatization, albitization, silicification, and sulfidation along the main stage veins and breccia. Alteration mineral assemblage includes ankerite ± calcite, quartz, albite, and pyrite along with minor sericite. Pyrite is the most abundant sulfide mineral that is spatially related to native gold and electrum (<2–42 μm in size). It is more abundant as dissemination in the altered host rocks than those in veins. This suggests that water–rock interaction played a role to precipitate pyrite and Au in the Salu Bulo prospect. The Au contents of intensely altered host rocks and ores have positive correlations with Ag, Ni, Mo, and Na. Fluid inclusions in the veins of the main stage and the matrix of breccia are mainly two‐phase liquid‐rich inclusions with minor two‐phase, vapor‐rich, and single‐phase liquid or vapor inclusions. CO2 and N2 gases are detected in the fluid inclusions by Laser Raman microspectrometry. Fluid boiling probably occurred when the fluid was trapped at approximately 120–190 m below the paleo water table. δ18OSMOW values of fluid, +5.8 and +7.6‰, calculated from δ18OSMOW of quartz from the main stage vein indicate oxygen isotopic exchange with wall rocks during deep circulation. δ34SCDT of pyrite narrowly ranges from ?2.0 to +3.4‰, suggesting a single source of sulfur. Gold mineralization in the Salu Bulo prospect occurred in an epithermal condition, after the metamorphism of the host rocks. It formed at a relatively shallow depth from fluids with low to moderate salinity (3.0–8.5 wt% NaCl equiv.). The temperature and pressure of ore formation range from 190 to 210°C and 1.2 to 1.9 MPa, respectively.  相似文献   
482.
Nutrient concentrations (nitrate + nitrite, phosphate and silicate) in deep seawater (321 m depth) of Toyama Bay, Japan, were measured from August 1996 to July 1997 to determine the magnitude of daily variations. Significant daily variations were observed; concentrations ranged from 4.42 to 22.4 µM for nitrate + nitrite, from 0.86 to 1.98 µM for phosphate, and from 9.91 to 47.7 µM for silicate, respectively. However, there were not significant relationships between nutrient concentrations and water temperature, or between nutrients and salinity. Since temperature and salinity in the >300 m depth layer were constant through the year, the results suggest that there may be water masses with different nutrient concentrations in the deep layers (at about 320 m depth) of the bay, and a horizontal advection of these water masses may be responsible for the observed daily variations.  相似文献   
483.
In order to validate wind vectors derived from the NASA Scatterometer (NSCAT), two NSCAT wind products of different spatial resolutions are compared with observations by buoys and research vessels in the seas around Japan. In general, the NSCAT winds agree well with the wind data from the buoys and vessels. It is shown that the root-mean-square (rms) difference between NSCAT-derived wind speeds and the buoy observations is 1.7 ms–1, which satisfies the mission requirement of accuracy, 2 ms–1. However, the rms difference of wind directions is slightly larger than the mission requirement, 20°. This result does not agree with those of previous studies on validation of the NSCAT-derived wind vectors using buoy observations, and is considered to be due to differences in the buoy observation systems. It is also shown that there are no significant systematic trends of the NSCAT wind speed and direction depending on the wind speed and incidence angle. Comparison with ship winds shows that the NSCAT wind speeds are lower than those observed by the research vessels by about 0.7 ms–1 and this bias is twice as large for data observed by moving ships than by stationary ships. This result suggests that the ship winds may be influenced by errors caused by ship's motion, such as pitching and rolling.  相似文献   
484.
In the western subarctic North Pacific, a wind-driven cyclonic circulation, called the western subarctic gyre (WSAG), exists. We examined year-to-year changes of the gyre and hydrographic structures, applying the altimetry-based gravest empirical mode (AGEM) method to hydrographic and altimetric sea surface height (SSH) data, and relation to the in situ variation of the temperature minimum layer, i.e., the dichothermal layer, depth at station K2 (47° N, 160° E). The AGEM-based geostrophic volume transport and the streamfunction of the WSAG in the top 1000-dbar layer show that the gyre changes substantially. From the late 1990s to the mid-2000s, the gyre shrunk northward. Due to the shrinkage, the halocline bottom, which is equivalent to the top of the main pycnocline, deepens at K2 outside the central part of the gyre. The downward displacement of the dichothermal layer at K2 was found to be significantly related to that of the underlying halocline due to the northward shrinkage of the WSAG.  相似文献   
485.
ABSTRACT

When applying a distributed hydrological model in urban watersheds, grid-based land-use classification data with 10 m resolution are typically used in Japan. For urban hydrological models, the estimation of the impervious area ratio (IAR) of each land-use classification is a crucial factor for accurate runoff analysis. In order to assess the IAR accurately, we created a set of vector-based “urban landscape GIS delineation” data for a typical urban watershed in Tokyo. By superimposing the vector-based delineation map on the grid-based map, the IAR of each grid-based land-use classification was estimated, after calculating the IARs of all grid cells in the entire urban watershed. As a result, we were able to calculate the frequency distribution of IAR for each land-use classification, as well as the spatial distribution of IARs for the urban watershed. It is evident from the results that the reference values of IAR for the land-use classifications were estimated very roughly and inherited errors of between about 7% and 70%, which corresponds to more than 100 mm increase of direct runoff for the 1500 mm annual average precipitation.
Editor D. Koutsoyiannis; Guest editor E. Volpi  相似文献   
486.
Carbon isotope fractionation between coexisting calcite and graphite (C ) has been studied in metamorphosed limestones from three thermal aureoles around Cretaceous granitic bodies (i.e., Tanohata, Tono, and Senmaya aureoles) in the Kitakami Mountains, Northeast Japan. C in each aureole decreases toward the granitic bodies, and becomes virtually uniform near the sillimanite isograd for metapelites, although calcite has variable isotopic ratios reflecting the original sedimentary compositions. The relationships indicate that isotopic equilibrium has been attained in metamorphosed limestone of sillimanite grade. Estimated C at the sillimanite isograd is similar in the Tanohata and Tono aureoles, but different in the Senmaya aureole with smaller carbon isotopic fractionations. From the temperature dependence of C and the negative dP/dT of andalusite–sillimanite equilibrium, we conclude that the sillimanite isograd in the Senmaya aureole was under higher temperature and lower pressure than in the other two localities. Temperatures at the sillimanite isograd are estimated by using existing calibrations of carbon isotopic exchange between calcite and graphite, whereas pressures are estimated from carbon isotopic temperatures and the andalusite–sillimanite equilibrium (Holdaway and Mukhopadhyay 1993a). Consistency of the P–T estimates is examined in the light of phase equilibria in the pelitic system. The estimated pressures at the sillimanite isograd are at about 2.1–2.7(±0.2) kbar for the Tanohata and Tono aureoles and less than 1 kbar for the Senmaya aureole, respectively. Geobarometry of sillimanite isograd in thermal aureoles indicates a marked difference in the depth of solidification of upper crustal granitoids: the Senmaya pluton has intruded and solidified at a very shallow level of less than 4 km whereas the Tanohata and Tono plutons are more deep-seated (ca. 8–10 km). The method can also be an effective tool in studying low-pressure type metamorphism in which geothermobarometry using garnet is not always applicable.Editorial responsibility: J. Hoefs  相似文献   
487.
Sills, pillow lavas and hyaloclastites of the HFSE-rich picrite and related rocks (ankaramite and basanite) occur in the Middle Permian cherts in the Mino Jurassic accretionary complex, southwestern Japan. These rocks show systematic trace element patterns enriched in incompatible elements, which indicate that the associated ankaramite and basanite are formed by the crystal fractionation from the picrite. The presence of the hyaloclastite in the chert sequence covering a large tholeiitic greenstone body indicates that the picrite was produced in an intraoceanic setting in the Middle Permian time subsequent to the extrusion of the voluminous oceanic island tholeiite. The Mino picrites resemble the Siberian meimechite and Polynesian picrites in its HFSE-rich chemical composition. The HFSE enrichment in these picrites cannot be explained by low degree of partial melting of primitive peridotite mantle only, and needs a source material involving recycled oceanic crust (eclogite). The differences in MgO content and in TiO2/Al2O3 and Zr/Y ratios among the HFSE-rich picrites indicate that the melting pressure increases from the Polynesian picrite through Mino picrite to Siberian picrite. This may reflect the increasing thickness of the overlying lithosphere at the time and place of magmatism. The HFSE-rich picrites may be a product of a superplume event. The presence of HFSE-rich picrite in Mino and Siberia indicate that the superplume activities occur in both continental and oceanic settings in the Permian time.  相似文献   
488.
489.
Jovian decametric radio wave emissions that were observed at Goddard Space Flight Center, U.S.A. for a period from 1 October to 31 December, 1974 and data obtained at Mt Zao observatory, Tohoku University, Japan, for a period from 14 July to 6 December, 1975 have been used to investigate the relationship of the occurrence of the Jovian decametric radio waves (JDW), from the main source, to the geomagnetic disturbance index, ΣKp. The dynamic cross-correlation between JDW and ΣKp indicates an enhanced correlation for certain values of delay time. The delay time is consistent with predicted values based on a model of rotating turbulent regions in interplanetary space associated with two sector boundaries of the interplanetary magnetic field, i.e. the rotating sector boundaries of the interplanetary magnetic field first encounter the Earth's magnetosphere producing the geomagnetic field disturbances, and after a certain period, they encounter the Jovian magnetosphere. There are also cases where the order of the encounter is opposite, i.e. the sector boundaries encounter first Jovian magnetosphere and encounter the Earth's magnetosphere after a certain period.  相似文献   
490.
Phobos-ellipsoid models made of clay were fragmented by the impact of high-velocity projectiles to examine the idea proposed by P. Thomas, J. Veverka, and T. Duxbury ((1978) Nature273, 282–284) that the grooves on Phobos are the manifestation of fractures produced by the Stickney-forming impact. The fracture lines on the models consist of two sets. One is concentric around the impact site and along E lines, which are defined as the intersecting lines of the ellipsoid surface and a set of spherical surfaces with the center of the spheres at the impact site. The other runs radially from the impact site and along P lines, which are defined as the lines crossing E lines perpendicularly on the ellipsoid surface. Some patterns of the grooves originating radially from the crater Stickney on Phobos are very similar to the P lines. The gridded topography, hummocky groove sections, and smooth topography on Phobos could have been formed by the fracture or associated surface disturbances due to the wave induced by the Stickney-forming impact, because they are distributed along the E lines surrounding the converging point of the P lines. All the models except one showed that the density of the fractures east of the impact site is greater than that of those to the west. Fracture patterns similar to one of the most prominent groove sets, which converge and diminish into the region of about (270°, 0°) were not produced by the impact on the ellipsoid of uniform constituent. These grooves would have been produced by the opening of preexisting cracks by the Stickney-forming impact. Other grooves also seem to be affected by such latent cracks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号