首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7243篇
  免费   1646篇
  国内免费   2658篇
测绘学   1139篇
大气科学   1226篇
地球物理   1543篇
地质学   4592篇
海洋学   1168篇
天文学   103篇
综合类   684篇
自然地理   1092篇
  2024年   99篇
  2023年   282篇
  2022年   533篇
  2021年   647篇
  2020年   491篇
  2019年   588篇
  2018年   532篇
  2017年   554篇
  2016年   510篇
  2015年   485篇
  2014年   599篇
  2013年   620篇
  2012年   622篇
  2011年   606篇
  2010年   551篇
  2009年   519篇
  2008年   484篇
  2007年   416篇
  2006年   415篇
  2005年   349篇
  2004年   271篇
  2003年   199篇
  2002年   189篇
  2001年   128篇
  2000年   119篇
  1999年   105篇
  1998年   95篇
  1997年   89篇
  1996年   65篇
  1995年   60篇
  1994年   57篇
  1993年   44篇
  1992年   60篇
  1991年   31篇
  1990年   29篇
  1989年   19篇
  1988年   15篇
  1987年   10篇
  1986年   5篇
  1985年   3篇
  1984年   5篇
  1983年   6篇
  1982年   3篇
  1981年   6篇
  1980年   5篇
  1979年   8篇
  1977年   2篇
  1958年   4篇
  1954年   6篇
  1925年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
201.
The key components of S. triqueter root exudates involved 4-oxo-pentanoic acid, succinic acid, glutaric acid, phthalate acid, citric acid, vanillic acid, myristic acid, pentadecanoic acid, decanoic acid, 14-methyl-pentadecanoic acid, hexadecanoic acid, octadecanoic acid and oleic acid, and the content of the water-soluble organic acids (citric acid, succinic acid and glutaric acid) significantly increased in pyrene and lead co-contaminated rhizosphere soil. These three water-soluble organic acids including citric acid, succinic acid and glutaric acid were detected as the specific root exudates of S. triqueter under stress of pollutants for pyrene and lead, so they were chosen as the research objects, and they were added into the bioremediation systems of pyrene and lead co-contaminated wetland soils. Compared with the control, the treatments added the three organic acids always improved the quantity of the bioavailable fraction of pyrene and lead in wetland soils and greatly influenced other chemical states of pyrene and lead fractions in the test concentration range. Under the 50 g kg?1 of organic acids concentration, the amount of the bioavailable fraction of pyrene and lead increased 41.0 and 872.7 % by citric acid, respectively. The enhancement of bioavailability of pyrene and lead in the wetland soil by adding organic acids generally decreased in the following order: citric acid > succinic acid > glutaric acid. Enhancing effects of organic acids on the bioavailability improvement of pyrene and lead is remarkable.  相似文献   
202.
专题地质填图及有关问题讨论   总被引:2,自引:1,他引:1  
面积性地质调查及填图是今后地质调查的主要工作,如何做好这个工作,并实现地质调查和科研一体化,特别是在已有填图基础上,如何部署和开展新的填图工作,是一个亟待回答的新问题。专题地质填图是针对存在的重要地质或资源、环境问题,或是针对特定目标地质体等,以解决特定问题或满足社会特定需求为主要目的、填图与研究融为一体的地质填图,填图的范围和比例尺依据解决问题和目标地质体而定。专题地质填图是以问题和需求为驱动,是对已有的综合地质填图的补充和提高,是高效实现地调科研一体化的一种方式。论述了专题填图的内涵、必要性,以及开展专题填图的方式和方法。  相似文献   
203.
204.
205.
206.
This paper examines the distribution of unconsolidated sediment in the KwaZulu-Natal Bight located along the east coast of South Africa. Results show that there is a general shelf-wide sediment distribution of coarser grain sizes between depths of 60 and 100?m, punctuated by a broad swathe of mud offshore of the Thukela River. Seasonal changes in sediment distribution patterns are small, being restricted to seaward fining on the inner shelf off the fluvial sources. Sediment distribution reflects a partitioning between sediment populations that are current- influenced and relict (palimpsest) populations associated with submerged shorelines. Wave ravinement during the deglacial transgression, the reworking of submerged shorelines during sea-level stillstands and, to a lesser extent, the Agulhas Current system, are the dominant controls on sediment distribution.  相似文献   
207.
以2014—2015年的GF 1为主、少量OLI影像为基础,参考第二次中国冰川目录等文献资料,修编完成青海省和西藏自治区两省区的现代冰川编目,查明青藏两省区目前共有冰川24 796条,总面积约2624×104 km2,约占青藏两省区区域面积的137%,冰川储量为2027×103~2121×103 km3。调查区冰川数量以面积<10 km2、冰川面积介于10~100 km2之间的冰川为主,其中面积<10 km2的冰川有19 983条,占总数量的8059%,面积介于10~100 km2之间的冰川面积为11 96240 km2,占总面积的4559%;面积最大的中锋冰川的面积达23737 km2。调查区内的山系(高原)均有冰川分布,念青唐古拉山冰川数量最多,其次是喜马拉雅山和冈底斯山,这3座山系冰川数量占调查区内冰川总数量的6333%;念青唐古拉山、喜马拉雅山和昆仑山的冰川面积和冰储量位列前3位,其冰川面积和冰储量分别占总数的6809%和7344%;然而昆仑山和羌塘高原的单条冰川的平均面积大于念青唐古拉山和喜马拉雅山的平均面积。从冰川海拔分布来看,海拔5 000~6 500 m之间是冰川集中发育区域,约占调查区冰川数量和冰川总面积的85%以上。调查区的冰川在各流域的分布差异显著,恒河流域是冰川分布数量最多、面积最大的一级外流区,其数量占冰川总量的47%以上,面积占总面积的52%以上;青藏高原内陆流域的冰川数量、面积次之,其冰川数量占总数量的21%,面积占总面积的24%以上,并且内流区单条冰川的平均面积略大于外流区的平均面积。总体上,西藏的冰川数量、面积和冰储量分别占西藏和青海两省区的8492%、8492%、8668%,单条冰川的平均面积两省区相近。  相似文献   
208.
This work restored the erosion thickness of the top surface of each Cretaceous formations penetrated by the typical well in the Hari sag, and simulated the subsidence burial history of this well with software BasinMod. It is firstly pointed out that the tectonic subsidence evolution of the Hari sag since the Cretaceous can be divided into four phases: initial subsidence phase, rapid subsidence phase,uplift and erosion phase, and stable slow subsidence phase. A detailed reconstruction of the tectonothermal evolution and hydrocarbon generation histories of typical well was undertaken using the EASY R_0% model, which is constrained by vitrinite reflectance(R_0) and homogenization temperatures of fluid inclusions. In the rapid subsidence phase, the peak period of hydrocarbon generation was reached at c.a.105.59 Ma with the increasing thermal evolution degree. A concomitant rapid increase in paleotemperatures occurred and reached a maximum geothermal gradient of about 43-45℃/km. The main hydrocarbon generation period ensued around 105.59-80.00 Ma and the greatest buried depth of the Hari sag was reached at c.a. 80.00 Ma, when the maximum paleo-temperature was over 180℃.Subsequently, the sag entered an uplift and erosion phase followed by a stable slow subsidence phase during which the temperature gradient, thermal evolution, and hydrocarbon generation decreased gradually. The hydrocarbon accumulation period was discussed based on homogenization temperatures of inclusions and it is believed that two periods of rapid hydrocarbon accumulation events occurred during the Cretaceous rapid subsidence phase. The first accumulation period observed in the Bayingebi Formation(K_1 b) occurred primarily around 105.59-103.50 Ma with temperatures of 125-150℃. The second accumulation period observed in the Suhongtu Formation(K_1 s) occurred primarily around84.00-80.00 Ma with temperatures of 120-130℃. The second is the major accumulation period, and the accumulation mainly occurred in the Late Cretaceous. The hydrocarbon accumulation process was comprehensively controlled by tectono-thermal evolution and hydrocarbon generation history. During the rapid subsidence phase, the paleo temperature and geothermal gradient increased rapidly and resulted in increasing thermal evolution extending into the peak period of hydrocarbon generation,which is the key reason for hydrocarbon filling and accumulation.  相似文献   
209.
The Sidingheishan mafic-ultramafic intrusion is located in the eastern part of the Northern Tianshan Mountain, along the southern margin of the Central Asian Orogenic Belt in northern Xinjiang autonomous region of China. The Sidingheishan intrusion is mainly composed of wehrlite, olivine websterite, olivine gabbro, gabbro and hornblende gabbro. At least two pulses of magma were involved in the formation of the intrusion. The first pulse of magma produced an olivine-free unit and the second pulse produced an olivine-bearing unit. The magmas intruded the Devonian granites and granodiorites.An age of 351.4±5.8 Ma(Early Carboniferous) for the Sidingheishan intrusion has been determined by U-Pb SHRIMP analysis of zircon grains separated from the olivine gabbro unit. A U-Pb age of 359.2±6.4 Ma from the gabbro unit has been obtained by LA-ICP-MS. Olivine of the Sidingheishan intrusion reaches 82.52 mole% Fo and 1414 ppm Ni. On the basis of olivine-liquid equilibria, it has been calculated that the MgO and FeO included in the parental magma of a wehrlite sample were approximately10.43 wt% and 13.14 wt%, respectively. The Sidingheishan intrusive rocks are characterized by moderate enrichments in Th and Sm, slight enrichments in light REE, and depletions in Nb, Ta, Zr and Hf. The ε_(Nd)(t) values in the rock units vary from +6.70 to +9.64, and initial ~(87)Sr/~(86)Sr ratios range between 0.7035 and0.7042. Initial ~(206)Pb/~(204)Pb, ~(207)Pb/~(204)Pb and ~(208)Pb/~(204)Pb values fall in the ranges of 17.23-17.91,15.45-15.54 and 37.54-38.09 respectively. These characteristics are collectively similar to the Heishan intrusion and the Early Carboniferous subduction related volcanic rocks in the Santanghu Basin, North Tianshan and Beishan area. The low(La/Gd)_(PM) values between 0.26 and 1.77 indicate that the magma of the Sidingheishan intrusion was most likely derived from a depleted spinel-peridotite mantle.(Th/Nb)_(PM)ratios from 0.59 to 20.25 indicate contamination of the parental magma in the upper crust.Crystallization modeling methods suggest that the parental magma of the Sidingheishan intrusion was generated by flush melting of the asthenosphere and subsequently there was about 10 vol%contamination from a granitic melt. This was followed by about 5 vol% assimilation of upper crustal rocks. Thus, the high-Mg basaltic parental magma of Sidingheishan intrusion is interpreted to have formed from partial melting of the asthenosphere during the break-off of a subducted slab.  相似文献   
210.
The Lanping Basin in the Nujiang‐Lancangjiang‐Jinshajiang (the Sanjiang) area of northeastern margin of the Tibetan Plateau is an important part of eastern Tethyan metallogenic domain. This basin hosts a number of large unique sediment‐hosted Pb‐Zn polymetallic deposits or ore districts, such as the Baiyangping ore concentration area which is one of the representative ore district. The Baiyangping ore concentration area can be divided into the east and west ore belts, which were formed in a folded tectogene of the India‐Asia continental collisional setting and was controlled by a large reverse fault. Field observations reveal that the Mesozoic and Cenozoic sedimentary strata were outcropped in the mining area, and that the orebodies are obviously controlled by faults and hosted in sandstone and carbonate rocks. However, the ore‐forming elements in the east ore belt are mainly Pb‐Zn‐Sr‐Ag, while Pb‐Zn‐Ag‐Cu‐Co elements are dominant in the west ore belt. Comparative analysis of the C‐O‐Sr‐S‐Pb isotopic compositions suggest that both ore belts had a homogeneous carbon source, and the carbon in hydrothermal calcite is derived from the dissolution of carbonate rock strata; the ore‐forming fluids were originated from formation water and precipitate water, which belonged to basin brine fluid system; sulfur was from organic thermal chemical sulfate reduction and biological sulfate reduction; the metal mineralization material was from sedimentary strata and basement, but the difference of the material source of the basement and the strata and the superimposed mineralization of the west ore belt resulted in the difference of metallogenic elements between the eastern and western metallogenic belts. The Pb‐Zn mineralization age of both ore belts was contemporary and formed in the same metallogenetic event. Both thrust formed at the same time and occurred at the Early Oligocene, which is consistent with the age constrained by field geological relationship.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号