首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   8篇
  国内免费   21篇
大气科学   45篇
地球物理   1篇
海洋学   2篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2014年   2篇
  2013年   1篇
  2011年   2篇
  2009年   1篇
  2008年   2篇
  2007年   5篇
  2006年   4篇
  2004年   1篇
  2003年   1篇
  2002年   4篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
排序方式: 共有48条查询结果,搜索用时 78 毫秒
11.
使用2000年5月22-25日500hPa、700hPa、850hPa以及地面天气图资料,描述了当年5月24日发生在湖北境内一次暴雨天气过程的高空和地面天气形势;同时根据武汉暴雨研究MAPS模式提供的有关物理量格点场资料,对此次暴雨天气过程的能量场、散度场、涡度场与水流通量散度场进行了分析。其结果表明,中低层低涡、切变线以及地面中尺度耦合带是形式这次暴雨过程的主要天气系统,且地面中尺度辐合系统与大暴雨落区存在很好的对应关系。  相似文献   
12.
支持向量机分类方法在天空云量预报中的应用   总被引:6,自引:0,他引:6  
熊秋芬  顾永刚  王丽 《气象》2007,33(5):20-26
以2001年5月1日至2004年12月31日逐日武汉市地面、高空观测资料及欧洲中心24小时预报场等资料为基础,构建了不同的训练样本集,基于支持向量机方法进行了大量多因子的随机交叉验证,从而筛选出了包含最佳预报因子的训练样本集和相应的核参数g,建立了武汉市天空云量的预报模型。交叉验证结果表明预报模型是稳定性的、且具有较好的预报能力和推广应用能力。预报试验和实时预报的结果都显示出SVM方法对天空云量有一定的预报能力。  相似文献   
13.
梅雨锋暴雨数值模拟中地形的作用   总被引:1,自引:0,他引:1       下载免费PDF全文
通过WRF模式对2003年7月9日至10日梅雨锋暴雨天气过程在有、无地形情况下数值模拟的结果的分析,探讨了地形对梅雨锋暴雨的影响。研究表明:在有地形的模拟中,模拟的结果较好地再现了梅雨锋降水过程、主要影响系统和梅雨锋的结构;而无地形的模拟中,模拟的雨带偏南,强降水范围偏大,降水系统偏南。地形对梅雨锋暴雨的作用是由于地形减弱了北方冷空气的强度。  相似文献   
14.
对1999年6~年6~9月利用MOS预报方法制作的湖北省常规要素预报结果进行了检验和分析。结果表明该方法对湖北省的降水、最高气温及最低气温等要素有一定的预报能力。同时针对温度和降水的预报误差形成原因作了分析,并对缩小误差提出了相应的改进措施。  相似文献   
15.
基于常规高空、地面观测资料,分析了2012年5月12日南昌大暴雨过程的环流背景和主要影响系统,并利用美国国家海洋和大气管理局(NOAA)开发的HYSPLIT模式和6 h一次的NCEP1°×1°再分析资料模拟了此次大暴雨过程中气块的240 h后向轨迹。结果表明:1)此次大暴雨过程发生在500 hPa高度层低槽前,中低层有低涡、切变线和低空急流,200 hPa高度层风向分流辐散的环流背景下,且南昌位于地面冷锋前暖区中,有弱的不稳定能量等对流性降水特征。2)在模拟的南昌站6条气块后向轨迹中,有3条轨迹源自陆地,1条来自暴雨区周围,只有2条轨迹来自暖湿的海洋,其中各有3条轨迹来自对流层低层和中高层。3)此次大暴雨过程的水汽主要来自于对流层低层南海西南部向我国陆地的水汽输送和本地周围水汽的贡献,其次是位于我国西部大陆对流层中下层向东的水汽输送。  相似文献   
16.
天空云量预报及支持向量机和神经网络方法比较研究   总被引:11,自引:2,他引:11  
使用支持向量机和人工神经网络两种方法,分别建立了天空云量的预报模型。利用2001年5月1日~2004年12月31日的武汉市地面、高空观测值及欧洲中心的24小时预报场等资料,通过按不同比例随机抽取样本进行交叉验证的方法,分析了SVM和ANN模型的预报能力和鲁棒性;然后再用全部样本资料建立预报模型,来预报2005年1月1日~5月31日武汉市天空云量。交叉验证和实例预报的结果显示:虽然SVM和ANN模型都表现了较好的预报能力,但SVM的预报能力高于ANN方法,且在计算速度上有ANN无法比拟的优势。  相似文献   
17.
利用常规观测资料,多普勒天气雷达产品,基于多源数据的RMAPS模拟结果等,对2017年7月9日发生在河北顺平县的一次由下击暴流引发的极端大风过程进行了分析和模拟。结果表明:(1)对流云中及云下方的西北气流受降水影响,动量下传且伴有地面的辐散风,近地层的下沉中心位于地面大风区上空。(2)云中水成物微物理特征模拟结果显示雨水和霰/冰雹的比含水量大,雹胚生长主要与雪和云水有关,而霰/冰雹融化后增加了雨水粒子。(3)比较不同水成物的等效冷却温度,发现雨水蒸发冷却对大风形成的贡献最大,冰雹的融化机制和拖曳作用贡献量相当;在700 hPa以下,随着高度降低雨水拖曳的贡献逐渐大于冰雹融化与冰雹拖曳贡献之和。(4)下沉气流叠加在地面辐散风场和冷池密度流上,导致地面辐散中心的东南侧出现了43.1 m·s-1的极端强风。极端强风的下游,由于云水凝结、雹胚生长等凝结潜热释放过程抵消了部分水成物的冷却效应,以及冷出流减弱等因素,使得地面风速有所减弱。  相似文献   
18.
利用常规观测资料和6 h一次的NCEP 1°×1°再分析场资料对新疆2015年2月12—14日北疆暴雪过程和2015年5月17—21日南疆暴雨过程的环流形势和主要影响系统进行分析,并基于HYSPLIT模式模拟的后向轨迹分析强降水的水汽来源和输送特征。结果表明:1)2次强降水过程均发生在高空低槽东移,低层有低涡,地面有锋面气旋,高空有辐散的天气背景下。2)冬季暴雪过程中,北疆水汽主要源自西亚和中亚地区。其中源自西亚地区的干气块下沉到近地面时从下垫面获得水汽,对强降雪的贡献最大;其次是起源于中亚西南部地区近地层的湿气块对强降雪的贡献。3)春季暴雨过程中,南疆的水汽主要来自中亚的哈萨克斯坦。其中来自哈萨克斯坦南部上空的干空气下沉到近地层时从下垫面获得水汽,对强降雨的贡献最大;其次是源自哈萨克斯坦东部和东南部对流层低层的湿气块对强降雨的贡献大。4)2次强降水过程中水汽主要来自陆地而不是海洋,气块在近地层移动或下沉到近地层时,下垫面水汽蒸发使气块变湿,是强降水的水汽主要贡献者;表明春季和冬季的水汽输送通道与夏季来自阿拉伯海等低纬的水汽通道不同。  相似文献   
19.
熊秋芬  苟尚  张昕 《高原气象》2016,(4):1060-1072
为了更全面地了解温带气旋的结构和形成原因,利用常规高空、地面观测、NCEP的1°×1°再分析资料和FY-2E水汽图像等资料,分析了2014年6月6 10日发生在华北及东北温带气旋的强度和移动路径、环流背景及结构和成因等。结果表明:(1)在发展阶段,地面气旋中心气压变化不大,但以逆时针旋转的路径移动;当地面气旋中心与高层低涡中心在同一垂直轴线上时,气旋停止发展。(2)以异常路径移动的气旋发生在500 h Pa大尺度环流多次调整的背景下。当气旋上游贝加尔湖至我国新疆南部的高压脊发展时,气旋初生;当气旋下游日本岛东部至鄂霍次克海高压脊发展时,气旋发展。(3)当正相对涡度随高度向西倾斜、气旋中心上空对流层低层正相对涡度首先加大、且其西侧的冷锋锋区增强、随后气旋中心上空整层正相对涡度增大时,地面气旋处于发展过程中;当高低层正相对涡度垂直重合、且对流层低层冷锋锋区减弱,则气旋停止发展。(4)对流层上层具有高值位涡的干空气逐渐进入地面气旋中心上空的湿区时,高位涡所携带的高空正涡度平流辐散作用使得低层辐合加强、绝对涡度增大,引起地面气压下降。(5)气旋中心上空的对流层中层暖平流和高层较大的正涡度平流使得垂直上升速度增强,气旋逐步发展;地面气旋中心总是沿中低层暖平流和其下游高低层微差涡度平流较大的区域移动。  相似文献   
20.
尽管关于温带气旋发展和演变的观点不尽相同,但目前普遍被接受的两种模型是:挪威气旋模型、Shapiro和Keyser模型。以FY-2E卫星云图为基础,先给出8个温带气旋过程实例,然后结合常规高空、地面观测及NCEP的1°×1°再分析场等资料,通过个例分析,对暖锋后弯气旋发生发展的环流背景、结构及成因进行分析。结果表明:(1)卫星云图显示东亚陆地上温带气旋存在T-bone结构和暖锋后弯的事实。(2)温带气旋发生在500 h Pa东亚大陆中高纬两脊一槽的背景下,槽加深及下游脊的发展有利于气旋的发展,与经典温带气旋发生发展的环流背景类似。(3)2012年5月11—13日个例分析表明蒙古气旋中存在锋面波动、锋面断裂、T-bone结构和暖锋后弯、暖核被隔离现象;暖核可从地面向上伸展到600 h Pa。(4)在地面气旋初生和发展阶段,地面气旋中心西侧高低层正相对涡度区呈后倾结构;当高低层正涡度区几乎垂直重合时,地面气旋停止发展;气旋中心西侧对流层中低层的锋区一直存在。(5)当高低层涡度平流差值为正、300 h Pa正涡度平流引起的辐散叠加到对流层中低层锋区之上,地面气旋才会生成和发展。逐渐增强的暖平流从气旋中心的东部和北部向气旋的西部和西南部输送,从而形成了卫星云图上的T-bone结构和暖锋后弯现象。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号