排序方式: 共有43条查询结果,搜索用时 0 毫秒
31.
关中吨粮田适生区区划研究戴进,李兆元(陕西省气象科学研究所西安·710015)关中位于陕西中部,以关中平原为主体,可明显分出渭河阶地、黄土台原、山前洪积扇、土石中低山等主要地貌类型。“北山”以南至关中平原属暖温半于旱半湿润气候区,地带性土壤为揭土。经... 相似文献
32.
33.
34.
本文提出了一个估算光合有效辐射(PAR)各分量的物理模式.按光谱公式积分后,再将臭氧吸收,雷利散射和气溶胶削减后对应的透射率参数化.用于模式中的参数有:测站气压、臭氧量、昂斯川姆大气混浊度系数、单次散射反照率、地表反照率和太阳高度.模式计算值和精密光谱法(Spectral codes)(LOWTRAN和BRITE)计算值,与在Uccle(比利时)的实测值进行了比较.只要充分了解一地的大气透明状况,即使无同期的太阳辐射观测资料可资利用,也可估算出晴天条件下该地每日或每时的光合有效辐射. 相似文献
36.
37.
一次强飑线云结构特征的卫星反演分析 总被引:1,自引:0,他引:1
利用NOAA卫星AVHRR资料,对2006年4月28日山东一次春季强飑线过程进行了分析,重点研究了卫星资料多光谱综合分析的强对流云微物理特征和卫星识别的对流强信号,并与雷达、FY-2C卫星观测资料进行了对比分析。结果表明:(1)RGB合成图能清晰地显示云顶的结构、纹理、云砧、组成、高度及云厚等信息,是一种很方便的分析工具。(2)多光谱综合分析归纳出卫星探测对流强信号:云顶的对流结构和纹理突出,有明显的云砧,云顶以小粒子为主,粒子有效半径Re随高度增长缓慢,云团上部存在明显的Re随高度递减带,云顶Re和-dRe/dT能定量指示对流的强弱。据此,卫星识别出强中心A比实际降雹提前了近1h,比飑线发生提前了2.5h,比多普勒雷达监测提前了近2h,特别是识别出的强中心B比实际降雹提前了近4h。卫星探测为强对流天气的监测预报和预警提供了一种新途径。 相似文献
38.
39.
青藏高原(下称高原)对东亚大气环流、气候变化及下游灾害性天气形成、发展有重要影响,研究青藏高原云微物理特征有重要意义。但因高原台站稀少,对云微物理研究不充分。NPP(National Polar-orbiting Partnership)卫星ⅦRS(Visible Infrared Imaging Radiometer Suite)传感器包含17个中分辨率通道(750 m)和5个高分辨通道(375 m),具有反演初生小块对流云的优势,能够利用NPP/ⅦRS反演对流云的微物理特征。利用NPP/ⅦRS卫星格点对流云云物理自动反演(Automatic Mapping of Convective Clouds,AMCC)软件对高原地区2013-2017年夏季(6-8月)过境的ⅦRS资料进行了反演,得到了高原对流云的宏、微观物理特征,并计算了这些物理量在0.33°×0.33°格点上的平均值。分析得出如下结论:(1)反演云底温度(Tb)与那曲探空计算抬升凝结温度(TLCL)线性相关,相关系数为0.87,均方根误差为3.0℃。(2)高原对流云宏、微观物理特征为:一是云底冷(Tb为-5℃),云底离地高度为1800-2200 m,云内含水量低;二是云底云凝结核数浓度(NCCN)为200-400个/mg,最大过饱和度(Smax)为0.7%,NCCN少,Smax大,云滴凝结增长速率更快;三是降水启动厚度(D14)小,为1500-2000 m,雅鲁藏布江流域及藏南地区D14约500-1000 m,更加容易形成降水;四是云顶海拔高度为10-13 km,云厚度从南部5000 m逐渐减小到北部2500 m,云厚有限;五是晶化温度高,从中部、南部-30℃到北部-25℃,加之高原Tb < 0℃,使得云内降水粒子以冰相为主。(3)高原对流云的这些微物理特征决定了其降水具有多发、短时、量小、滴大的特点。这些结论进一步深化了对高原夏季对流云的科学认识。 相似文献
40.
一次暴雨过程中云微物理特征的卫星反演分析 总被引:7,自引:0,他引:7
利用卫星反演技术和云微物理分析方法,以陕北2006年7月2日发生的暴雨过程为例,反演了云顶粒子有效半径(Re)、云顶温度(T)等云物理特征参数,通过卫星不同时次对暴雨云团的探测资料,分析了暴雨发展过程.暴雨云团表现为多单体特征,发展旺盛期对流单体的数量明显增加、云团尺度大幅增加.根据暴雨云系中的对流云、层云、过冷水云、低云(未被高云遮挡住)4种类型,分别选择了9个代表区,用于分析这次暴雨过程中不同类型云的物理特征和垂直结构.结果表明:此次暴雨云团由多种高度的云组成,低云高度较低,温度较高,云顶在0--10℃;层云高度略高,T为-10--20℃,Re为10-20 μm,并含有连片分布的过冷水云(Re为10 μm左右);高度最高的云为对流云,镶嵌在系统性层云中或在其上发展,T最低达到-80℃左右.从云底至0℃层存在一个较厚的凝结增长带,Re为5-10μm;0--10℃层存在一个碰并增长带,Re从13-15μm增长到20~25μm,但其厚度小于凝结增长带;T<-10℃层以上存在一个深厚的冰相增长带,表明在对流云团的发展成熟期,冰相增长过程为优势云物理过程.随着云的逐渐发展,混合相增长带由厚变薄,冰化增长带增厚,晶化温度升高、高度降低,表明在对流云团发展到成熟的过程中,冰化增长带在下传,云中冰化增长过程向下传递明显. 相似文献