首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   6篇
  国内免费   14篇
大气科学   23篇
地质学   2篇
自然地理   1篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2014年   3篇
  2013年   3篇
  2012年   4篇
  2011年   3篇
  2010年   1篇
  2008年   2篇
  2007年   2篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
11.
天津大气气溶胶化学组分的粒径分布和垂直分布   总被引:7,自引:1,他引:6  
2006年8月在天津气象铁塔的10、120、220 m 3个不同高度.利用Andersen分级采样器同步进行大气气溶胶采样,样品用离子色谱和电感耦合等离子体质谱仪进行分析.结果表明,K元素主要集中在细粒子,Mg、Ca、Al、Fe元素主要集中在粗粒子,Na元素则具有双峰结构;总离子浓度随着高度的升高有增加的趋势,SO42-、N3-、NH4+、Ca2+是最主要的水溶性尤机离子;二次源是水溶性离子重要的贡献源.NO3-、SO42-、NH4+随着高度升高,浓度有向小粒径集中的趋势;各层气溶胶阴阳离子平衡值小于1,表明气溶胶偏碱性,与天津地处北方,土壤偏碱性,且非采暖期地面扬尘是主要的气溶胶来源有关;各层NO3-/SO42-平均值为0.48,表明非采暖期固定排放源(燃煤)仍然是天津大气细粒子中水溶性离子的主要来源.  相似文献   
12.
天津冬季大气能见度与空气污染的相互关系   总被引:3,自引:1,他引:2  
姚青  张长春  樊文雁  黄鹤 《气象科技》2010,38(6):704-708
为探求天津冬季大气能见度特征与空气污染的相互关系,于2008年12月至2009年1月连续观测大气能见度和空气污染物浓度(PM10、PM2.5质量浓度,O_3、NO_2和SO_2体积浓度),并结合相对湿度进行相关分析。结果表明:天津冬季大气能见度平均值为11.59 km,日变化呈明显的单峰特征,其变化特征受到空气污染物,尤其是气溶胶质量浓度及相对湿度变化共同影响;观测期内霾的发生频率接近50%;采用非线性回归方程拟合能见度与气溶胶质量浓度相互关系显示,PM2.5质量浓度对水平能见度的贡献大于PM10质量浓度,并且高湿情况下,能见度与气溶胶质量浓度相关性更好。  相似文献   
13.
2009年秋冬季天津低能见度天气下气溶胶污染特征   总被引:8,自引:0,他引:8  
姚青  蔡子颖  韩素芹  曲平 《气象》2012,38(9):1096-1102
为研究天津城区秋、冬季雾霾等低能见度天气下气溶胶污染特征,采用2009年10—12月的大气能见度及相关气象和环境监测数据,并结合一次典型雾霾事件分析PM10和PM2.5质量浓度演化过程及其垂直分布特征。结果表明,低能见度天气占秋、冬季观测时长的一半以上,其中以霾天气为主;典型低能见度过程分析显示,霾日近地层内PM2.5分布均匀,表现出显著的区域污染特征;雾日气溶胶质量浓度先升高后下降,系气溶胶粒子吸湿性增长与导致可溶性组份溶出的湿清除协同作用,低层PM2.5质量浓度显著高于较高层,其垂直分布差异与相对湿度的垂直变化和逆温层高度有关。  相似文献   
14.
天津一次持续低能见度事件的影响因素分析   总被引:7,自引:2,他引:5  
姚青  韩素芹  蔡子颖 《气象》2012,38(6):688-694
2009年1月天津发生了一次持续低能见度事件,从气象条件、污染演化过程和气流后向轨迹等方面分析该次事件是由以细粒子为主的灰霾天气所引起。分析表明,细粒子质量浓度是影响大气能见度的主要因素;细粒子在可吸人颗粒物中的富集,是造成持续性污染和能见度连续下降的主要原因;西南暖湿气流控制下的静稳天气有利于污染物聚集,而以大风降温为标志的冷锋过境是细粒子清除的重要机制;能见度的周期性变化主要依赖于细粒子的富集和污染物的快速清除,并且这一过程受到周期性天气系统的影响。  相似文献   
15.
天津夏季大气消光性质的研究   总被引:2,自引:0,他引:2  
利用2010年夏季天津城市边界层观测站颗粒物、黑碳气溶胶、氮氧化物(NOX)浓度、地面能见度和气象梯度观测资料,分析了天津夏季大气消光特性及低能见度事件产生的原因。结果表明,天津夏季主要污染物为PM10和PM2.5,大气气溶胶消光系数为529.06M.m-1,其中,吸收系数为50.17M.m-1,散射系数为478.89M.m-1,气体吸收系数为7.74M.m-1,气溶胶单次散射反射率为0.87。天津夏季边界层大气状态有近一半的时间为中性或偏稳定层结,当出现中性或偏稳定层结大气时则有接近一半的情况出现低能见度事件(能见度<5km),影响人们的日常生活。  相似文献   
16.
丁净  姚青  郝囝  刘敬乐  蔡子颖  韩素芹 《气象》2023,(1):99-109
大气颗粒物粒径谱分布不仅受到温度、湿度和风等气象因素影响,也与湍流等边界层特征密切相关。基于2018年11月同步观测的14.6~660.0 nm颗粒物粒径谱和相关气象数据,探讨不同气象因子,特别是湍流对颗粒物粒径谱分布的影响。研究结果表明:气温升高有利于促进核模态颗粒物总数浓度的增加,相对湿度升高可减少核模态和爱根模态颗粒物的总数浓度,同时增加积聚模态的颗粒物总数浓度。风速、湍流动能、摩擦速度、湍流强度等增加,对爱根模态和积聚模态的颗粒物起稀释、清除作用,但可促进核模态颗粒物总数浓度的增长。与湍流日变化相反,爱根模态和积聚模态的颗粒物总总数浓度的日变化呈现昼低夜高的变化趋势,清洁日核模态颗粒物总数浓度在午后持续增加,并在傍晚前达到峰值。核模态颗粒物总数浓度的增加相对于湍流的发展存在时间上的滞后性,当湍流发展3~5 h后,核模态颗粒物总数浓度开始明显增加。  相似文献   
17.
天津重污染天气混合层厚度阈值及应用研究   总被引:2,自引:1,他引:1  
蔡子颖  张敏  韩素芹  李培彦  刘敬乐  姚青 《气象》2018,44(7):911-920
在对比云高仪反演数据和中尺度模式不同边界层方案模拟数据的基础上,构建天津地区混合层厚度数据集,并收集2009—2015年天津地区PM_(2.5)质量浓度和能见度资料,开展天津地区重污染天气混合层厚度阈值和相关规律研究。结果表明:2000—2015年期间天津地区混合层厚度呈现波动性逐年增加趋势,与255m气象塔观测近年天津地区逆温层底升高以及夜间边界层高度增加有较强的一致性。统计显示PM_(2.5)日均质量浓度和混合层厚度呈现指数关系,混合层厚度越低PM_(2.5)质量浓度越高,其阈值天津地区可以以200、400、600和800 m作为界限判断大气污染垂直扩散能力,当日均混合层厚度200m时,天津地区重污染天气出现概率52%,中度以上霾出现概率46%,需要特别关注。PM_(2.5)日均质量浓度和混合层厚度的负相关并不适用于所有过程,对于输送型过程由于大气污染的输送一般由高空影响地面,在污染的起始阶段,混合层厚度的增加,反而有利于上层大气污染物向下的传输,使得近地面PM_(2.5)质量浓度升高,在运用混合层厚度阈值指标时需要特别考虑。  相似文献   
18.
根据2004年广东潮州沿海地区的气溶胶浓度观测资料,分析潮州沿海大气气溶胶无机离子浓度分布特征及气象要素对其的影响。结果表明:离子浓度季节性差异明显,总离子浓度呈现春夏季低、秋冬季高的特征,系由当地不同季节降雨量和风向分布不同造成的;气溶胶无机成分与海水近似,表明海盐是当地气溶胶的重要来源之一,但Cl-与Na+不一致,表明可能存在除海盐颗粒以外的异地气溶胶长距离输送;总离子浓度随采样点高度增加而降低,随采样时海陆风变化而变化;阳离子浓度日际变化不明显,阴离子浓度易受天气条件影响。  相似文献   
19.
天津一次雾过程的边界层特征研究   总被引:4,自引:2,他引:2  
蔡子颖  韩素芹  吴彬贵  黄鹤  姚青 《气象》2012,38(9):1103-1109
雾作为边界层内一种特殊的天气现象与边界层结构有着密切联系。本文利用天津边界层梯度观测平台分析2010年11月28日至12月2日一次雾过程的边界层结构特征。结果表明:此次过程雾Ⅰ阶段水汽最先在离地面80~100 m的高度凝结,雾Ⅱ(平流雾)阶段水汽由上往下传输;雾Ⅰ前,大气有明显的逆温,雾Ⅱ前大气处于不稳定状态,雾中大气趋于中性,在雾变薄过程中,边界层气象塔可观测到雾顶的强逆温;雾中长波辐射达到平衡,净长波辐射为0,可用此区分水雾和霾;雾对光化学烟雾有抑制作用,NO_x和小粒子会出现累积,影响人体健康。  相似文献   
20.
天津城区秋季PM2.5质量浓度垂直分布特征研究   总被引:8,自引:2,他引:6  
孙玫玲  穆怀斌  吴丹朱  姚青  刘德义 《气象》2008,34(10):60-66
为研究天津大气颗粒物的污染水平和时空分布特征,利用天津大气边界层观测铁塔(255m),分别在40m、120m、220m处设立监测点,通过监测到的PM2.5的质量浓度,结合PM10、能见度等资料来分析污染物的时空分布规律和分布特征.结果表明,天津城区PM2.5污染水平相当严重,日均质量浓度远高于美国1997年制定的65μg*m-3的排放标准.混合层厚度和稳定度的变化对PM2.5浓度变化有一定的影响,随混合层厚度的变化,不同高度PM2.5质量浓度值有所不同.23时至11时,120m浓度明显高于其它各层,11-18时,由于大气扩散能力的增强,三层污染物质量浓度开始下降,而到了18-23时,低层污染物浓度较高,各层浓度总体趋势为120m>40m>220m.PM2.5质量浓度的日变化与稳定度的变化较一致.气象条件和早晚出行高峰期的影响导致PM2.5的质量浓度出现峰值.PM10与PM2.5的总体变化趋势基本一致,说明污染物来源基本相同.能见度水平和细粒子污染水平呈现较好的负相关,细粒子质量浓度的高低是决定能见度好坏的主要因子.降水过程是颗粒物从大气中清除的重要机制.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号