首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   669篇
  免费   141篇
  国内免费   213篇
测绘学   98篇
大气科学   140篇
地球物理   100篇
地质学   435篇
海洋学   96篇
天文学   3篇
综合类   87篇
自然地理   64篇
  2024年   2篇
  2023年   41篇
  2022年   37篇
  2021年   43篇
  2020年   31篇
  2019年   49篇
  2018年   51篇
  2017年   18篇
  2016年   30篇
  2015年   44篇
  2014年   49篇
  2013年   26篇
  2012年   48篇
  2011年   47篇
  2010年   28篇
  2009年   40篇
  2008年   51篇
  2007年   40篇
  2006年   34篇
  2005年   48篇
  2004年   30篇
  2003年   30篇
  2002年   22篇
  2001年   8篇
  2000年   9篇
  1999年   15篇
  1998年   9篇
  1997年   10篇
  1996年   13篇
  1995年   7篇
  1994年   14篇
  1993年   6篇
  1992年   11篇
  1991年   7篇
  1990年   9篇
  1989年   5篇
  1988年   6篇
  1987年   8篇
  1986年   6篇
  1984年   6篇
  1983年   7篇
  1982年   2篇
  1981年   3篇
  1974年   5篇
  1963年   2篇
  1959年   2篇
  1958年   2篇
  1957年   1篇
  1955年   1篇
  1954年   2篇
排序方式: 共有1023条查询结果,搜索用时 15 毫秒
31.
El Ni?o(厄尔尼诺)事件对东亚和南亚次年夏季降水影响及其机理已经得到充分研究,但其对夏季青藏高原降水是否有显著影响还不清楚。本研究根据1950年后El Ni?o事件次年衰减期演变速度,对比分析衰减早型与晚型El Ni?o事件对南亚季风区与青藏高原夏季(6~9月)季节平均和月平均气候影响差异。结果显示在衰减早型次年夏季热带太平洋海温转为La Ni?a(拉尼娜)型且持续发展,引起Walker环流上升支西移,印度洋和南亚季风区上升运动加强,同时激发异常西北太平洋反气旋(NWPAC),阿拉伯海异常气旋和伊朗高原异常反气旋性环流响应,增加7~9月对流层偏南气流和印度洋水汽输送,导致南亚和高原西南侧降水偏多。衰减晚型次年6~8月热带太平洋El Ni?o型海温仍维持,印度洋暖异常海温显著,对应的印度洋和南亚季风区上升运动较弱,NWPAC西伸控制南亚季风区,阿拉伯海和中西亚分别呈现异常反气旋和气旋性环流,导致青藏高原西风加强,水汽输送减少,南亚北部和高原降水一致偏少。结果表明:(1)El Ni?o显著影响次年青藏高原西南部夏季季节和月平均降水与温度,是印度和高原西南部夏季降水显著相关的重要原因;(2)El Ni?o衰减快慢速度对南亚和青藏高原西南部夏季季节内降水的影响有着重要差异。  相似文献   
32.
随着计算机技术、虚拟现实技术的发展,数字地球、数字城市的提出,三维数字化建设也得到迅猛发展,三维GIS已成为GIS发展的主要方向,应用前景广阔。三维数字校园建设随即被提出。本文论述了基于Sky Line平台三维数字校园建设的基本流程、关键技术、网络发布、系统设计等,最终实现了临潼校区的三维数字化建设。  相似文献   
33.
杜家元  张向涛  刘培  罗明  张琴  姚佳利  王绪诚  梁杰 《地球科学》2021,46(10):3690-3706
珠一坳陷深层古近系两套优质生烃层系内发育的储层具有近源成藏的优势,但其非均质性强、低孔渗的特点制约了油气勘探,研究与此直接相关的“源-汇”系统,对于寻找富烃优储耦合的有利区意义重大.以构造运动和盆山地貌为基础,结合断陷湖盆以半地堑为基本单元的结构特点,划分了盆地级、半地堑级和区带级的三级“源-汇”系统.盆地级分为外源、内源型两类,可用来宏观分析优质烃源岩分布;半地堑级分为陡坡、缓坡和长轴型3类,对于定性评价储层优劣具有较大意义;区带级分为迁移型、转换型、稳定型3类,为有利区目标评价和井点选择提供参考.研究认为迁移型和转换型“源-汇”系统可形成良好的生储盖配置,是最为有利的油气富集区,应作为古近系重点勘探对象.   相似文献   
34.
基于逐5 min地面气象要素观测数据、逐日气象观冰站电线覆冰观测数据、安庆站逐12 h探空观测资料以及逐6 h ERA-Interim再分析资料,对2018年初安徽省沿长江及跨江线路电线舞动过程中气象要素进行分析,并对导致电线覆冰和大风的天气成因进行探讨。结果表明:舞动位置附近出现不同程度冻雨导致的电线覆冰,并伴有较强的东北风,极大风速风向与舞动线路夹角多在45°以上,冻雨和大风是导致此次输电线路舞动的直接因素;此次输电线路舞动发生伴随的冻雨属于典型的"过冷暖雨";700 h Pa南支槽前西南气流为此次冻雨输送水汽的同时带来暖温度平流,维持暖层的存在; 925 h Pa大陆冷高压下东北气流带来的冷温度平流使近地面层降水处于过冷却状态;锋面后冷空气在华北地区上空堆积致使冷高压加强是导致安徽沿江地区较强东北风形成的主要因素。  相似文献   
35.
36.
利用24个CMIP6全球气候模式的逐日降水模拟资料,基于广义极值分布(GEV)模型,研究了全球增暖1.5/2℃下我国20、50和100 a重现期极端降水的未来风险变化。可以发现,相对于历史时期(1995—2014年),全球升温1.5和2℃下极端降水发生概率风险空间分布相近,总体上呈现增加趋势,但额外增暖0.5℃将导致更高的风险。如50 a重现期极端降水,在增暖1.5/2℃下其重现期将分别变为17/14 a,极端降水将变得更加频繁。不同区域对气候变暖的响应存在区域差异,其中中国西部长江黄河中上游和青藏高原地区、中国东部长江黄河中下游及其以南地区,极端降水发生概率比达到3以上,局部更是达到5以上,为我国极端降水气候变化响应高敏感区域。进一步,基于概率分布函数从理论角度探讨了位置和尺度参数对发生概率风险的影响与贡献度量,并用于探讨极端降水气候平均态和变率变化对极端降水发生风险的影响,结果显示:位置和尺度参数的增量变化、风险变化率存在着显著的东西部差异,从而导致极端降水发生风险的影响因素存在差异。如中国西部尽管极端降水气候平均态和变率变化幅度不大,但因风险变化率较高,从而导致该区域的发生风险大...  相似文献   
37.
人类世可持续发展背景下的远程耦合框架及其应用   总被引:2,自引:1,他引:1  
在全球一体化进程不断加深的背景下,国家与地区之间的联系日益紧密,产生了一系列跨国家、跨地区、多尺度的社会—经济—环境影响,远程耦合(Telecoupling,社会、经济、环境的远距离相互作用)科学概念和综合框架的提出为解决上述问题提供了新方法和新途径。为更好促进远程耦合综合框架的正确使用和规范推广,本文系统解析了远程耦合综合框架,厘清各组成部分的定义和功能,梳理了框架的应用现状;通过对3个中国典型案例的阐释,展示了远程耦合综合框架的使用方法、结果分析及由此得出的科学意义和政策价值;最后描述了远程耦合综合框架使用中需要重点关注的问题,并对其应用前景进行了展望。远程耦合综合框架的推广应用有助于以跨国家、跨地区、多尺度的视角,重新审视多个人类与自然耦合系统的相互作用,揭示隐藏的远距离地理空间作用的科学价值,服务于有关政策的制定和实施,促进全球社会、经济、环境的可持续发展。  相似文献   
38.
近十年来,我国在亚洲大陆边缘沉积学和古海洋学研究中取得了突破性进展.在空间上,对北起拉普捷夫海、南至孟加拉湾的广大海域进行了沉积物调查取样,开展了跨纬度"源-汇"过程研究,建立了陆架第四纪高分辨率地层层序,初步揭示了构造运动、海平面变化、亚洲季风、海冰、海流以及人类活动等因素在不同时空尺度上对亚洲大陆边缘"源-汇"过程...  相似文献   
39.
华北板块南缘陕西洛南县北部中元古界蓟县系洛南群巡检司组顶部层控玉化硅质岩中,发育似层状硅质玉髓及透镜状燧石,这些燧石及硅质玉髓已经玉化,质细色艳,达到高品级石英岩质玉石级别,已申报为国家宝玉石矿种,并在宝玉石市场崭露头角,显示出巨大的经济开发潜力.作者以岩石学及地球化学分析为手段,研究该层控玉化硅质岩特征、成因及意义....  相似文献   
40.
东营凹陷牛38井沙三段高分辨率旋回地层研究   总被引:3,自引:1,他引:2  
自然伽玛测井资料取自山东省东营市胜利油田的牛38井。该井的沙河街组划分为四个段,其中沙三段依据含艾氏鱼群组合的鲱科化石和沉积物旋回堆积速率(AR)等研究,可与北美始新统绿河组进行对比。根据上世纪90年代沙三段古地磁研究结果,井深3263m处C18n.1n/C18n.1r界线调整为38.975MaBP。通过频谱分析和数字滤波计算,得出了沙三段几个界线的年龄值,其中,在沙三下、中亚段界线算出的36.9MaBP,岁差旋回幅度有明显变化,这一变化与Palike(Palikeetal.,2001)在ODP71线1052孔中发现的类似图像(36.7Ma)可比较。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号