首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   7篇
  国内免费   18篇
大气科学   54篇
  2021年   2篇
  2020年   2篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   6篇
  2013年   1篇
  2011年   4篇
  2010年   2篇
  2009年   6篇
  2008年   4篇
  2007年   6篇
  2006年   1篇
  2005年   4篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1988年   1篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
11.
雷正翠  夏文梅  周霖华  吴焕勤  姚丽娜  张备 《气象》2009,35(12):118-125
利用常州基本观测站1952-2007年长序列的雷暴观测资料和多普勒雷达回波资料,采用数理统计和小波变换方法,对常州雷暴的变化规律、周期特征以及雷达回波特征进行了分析.结果表明:(1)雷暴日数年代际间差异显著.(2)雷暴年际变化很大,最大值为最小值的5.9倍;雷暴日数总体呈显著减少的趋势.(3)夏季为雷暴高发季节,占总雷暴日数的66.8%.(4)月际变化差异大,雷暴集中出现在4-9月,其中7、8月为雷暴高发月.(5)从日分布来看,傍晚出现次数最多,其次为下午,上午出现最少.(6)常州年雷暴日数分布主要表现为12a(年代际)震荡周期贯穿在整个56年里;1952-2004年存在着非常明显7a左右的次周期特征;1968-2007年还存在3~4a的小周期特征.(7)常州雷暴的雷达回波基本反射率因子一般在30~65dBz之间,回波顶高为6~17km.(9)常州雷暴雷达回波移向主要有五类:西南东北向、东南西北向、西北东南向、旋转、局地生成.另外对常州雷雨大风和冰雹进行了统计分析,发现:7月为雷雨大风最高发月;5月和7月为冰雹最高发月.  相似文献   
12.
利用常规天气资料、地面观测资料、江西WebGIS雷达拼图和雷电监测资料,对2014—2016年江西出现的22次强雷电天气过程进行统计和对比分析。结果表明:江西强雷电天气易出现在赣北北部、南昌附近、上饶地区和吉安西部等区域;强雷电天气出现的环境背景场可分为副热带高压边缘型、副热带高压控制型、低涡切变型和台风外围型,最显著的特征是中高空经常伴有干冷舌侵入低层暖湿区;多项对流指数可以预测出现强雷电天气的可能性;雷达回波和雷电强度关系密切,回波类型以带状和块状为主;雷电强度和雷达回波强度有很好的对应关系,但产生强雷电的回波要具备强度大于50 dBz、强回波中心密实、强回波边缘梯度大等条件。  相似文献   
13.
南京及周边地区雷达气候学分析   总被引:1,自引:0,他引:1  
为了研究南京及周边地区暖季(6-9月)对流风暴的活动分布规律,利用2009-2013年6-9月长时间序列的南京多普勒天气雷达数据识别对流回波并格点化,统计并分析了南京及周边地区对流风暴的气候学分布特征,结果表明:(1)在暖季,南京及周边地区对流风暴具有明显的区域分布特征,其中7与8月为对流风暴活动高峰期,对流风暴频数分布大值中心位于南京东部沿江地区;(2)不同尺度和伸展高度对流风暴的分布特征各不相同,较大较深对流的分布大值中心更加明显;(3)对流风暴的垂直结构因月份不同而有所差异,7与8月对流风暴强度最大;(4)不同尺度和伸展高度对流风暴频数存在明显的日变化特征,呈多峰分布,主峰值区位于午后,同样,各月份对流风暴频数的日变化特征也非常明显,呈单峰或者多峰分布。   相似文献   
14.
多普勒天气雷达径向速度场缺测区域的存在是影响速度二次产品算法精确度的重要因素,在实际风场为线性分布的假设条件下,文中详细介绍了一种基于VAD技术的迭代填补技术.在合理考虑迭代约束条件的情况下,应用实测多普勒速度数据,根据缺测区域类型随机制造非连续累积10°-180°缺口的缺测区域和连续累积10°-180°缺口的缺测区域...  相似文献   
15.
南京地区7—8午后雷阵雨天气   总被引:2,自引:2,他引:0  
陶玫  夏文梅 《气象科学》2000,20(2):216-223
本文主要分析南京地区7-8月发生午后雷阵雨天气,气候与其相关的革些参数的特征,以及大尺度的天气形势条件,用南京单站资料分析位热不稳定度和不稳定能量,从物理场判定南京是否处于产生雷阵雨的潜在不稳定区内,从相关资料中建立南京地区7 ̄8月午后雷阵雨天气的概率预报方程。e  相似文献   
16.
基于多普勒雷达、闪电定位、地面观测资料和现场勘察情况,对2016年5月2日皖西南发生的一次连续下击暴流天气的成因进行分析。结果表明:引起2次微下击暴流的风暴为同一风暴单体,且为超级单体,旺盛阶段的雷达回波表现为钩状分布和倾斜结构;下击暴流产生的初始原因是液态或固态降水粒子下降的拖曳作用,中后期则主要源于热力不稳定、对流层中层的动量下传和补偿性气流作用,伴随的水成物与环境之间的负浮力增大是下击暴流发生的重要原因;对流层中层盛行风向造成的动量下传决定了2次微下击暴流的地面风走向;超级单体风暴具有反射率因子核最高和下降速度最快的特点,反射率因子核高度超过6 km,1个体扫间隔下降3 km左右或以上;当6 min降水达4 mm以上时,是发生下击暴流的征兆之一。  相似文献   
17.
降水过程中多普勒天气雷达风廓线产品特征   总被引:10,自引:2,他引:8  
夏文梅  陈楠  程婷  徐芬  顾松山 《气象》2008,34(10):20-26
利用南京多普勒天气雷达资料,在对VWP风廓线产品可靠性研究和表征"湿度"变化能力研究基础上,对南京地区春季大面积积层混合云降水过程中风廓线产品的特征进行了细致研究.研究表明,在降水前夕、维持增强和降水消亡的不同时段风廓线产品都呈现出相应的图像特征:在图像上ND区域呈现一楔形,快速减少,预示着降水在2个小时内发生;暖平流、切变层和大风区的存在有利于降水的维持和加强;VWP最高位置风向标的突降和中层ND区域的出现预示着降水即将结束.  相似文献   
18.
一次暴雨的湿位涡分析及EVAD技术应用   总被引:10,自引:8,他引:2  
利用NCEP/NCAR再分析资料和实测资料对2004年6月24-25日的一次江苏暴雨过程进行了分析,并且根据湿位涡守恒原理和倾斜涡度发展理论,对这次暴雨过程中的湿位涡进行了诊断分析,结果表明:此次暴雨由中尺度低涡、切变线直接触发产生;西南低空急流的稳定维持为这次暴雨的发生提供了重要的水汽条件;当负湿位涡向上的扰动高度增加、强度增强,高低空正负湿位涡区配合较好时常会出现强降水.另外,利用EVAD技术由多普勒雷达基数据定量计算了这次过程的平均散度场,通过分析其演变情况,发现:低层散度场由辐散逐渐向辐合过渡、高层散度场由辐合逐渐向辐散过渡时,预示着强降水将要发生,如果出现相反的变化趋势,则降水减弱或停止;低层由辐散向辐合、高层由辐合向辐散的转折出现时间早于强降水出现的时间,对强降水产生有预示作用,对预报员准确作出短时临近预报预警具有重要实际应用价值.  相似文献   
19.
利用MICAPS常规天气图资料、地面自动气象站资料、雷电资料和雷达拼图等资料,采用天气图中分析方法、统计方法、回波图像、回波廓线等分析方法,对2020年7月11日江西副热带高压边缘中尺度雷暴大风回波特征进行分析,结果表明:1)副热带高压控制或边缘上,江西上空100 hPa是东北风,500 hPa是西南风,高空呈现逆时针环流,T-lnP图上层结不稳定,对流有效位能CAPE (Convective Available Potential Energy)面积较大,对产生强对流天气有利;由于上下两层的风向不同,使得雷暴回波系统的移动与回波系统的云砧伸展方向不一致,从而加剧了对流上升运动,使得雷暴回波系统发展、加强、维持。2)回波产生初期是局地对流单体回波,通过不断新生单体和单体合并等方式,形成南北走向的回波短带,这种合并形成的回波短带发展旺盛时,会产生多站雷暴大风天气。3)南北走向的回波短带是产生雷暴大风的主要回波特征,虽然回波强度只有55 dBZ,但移动速度较快(60~70 km/h),造成地面大风。江西WebGIS雷达拼图上叠加多部雷达风暴跟踪信息STI (Storm Tracking Information),可以明确风暴的移动方向和移动速度,根据STI密集区判断,增加了STI的可用性。4)“前伸”或“延伸”回波反映了回波系统上方的高空风走向和积雨云的云砧飘离方向。“延伸”回波一定程度上表现出副高边缘雷暴回波系统的强弱程度。为改进副热带高压边缘中尺度雷暴大风的预警预报准确率提供依据。  相似文献   
20.
利用南京多普勒天气雷达径向速度数据,对2012年春季南京地区首场暴雨过程进行了分析。结果表明,风廓线产品(VWP)在降水各阶段都呈现出相应的图像特征:中上层降水云系向下扩展而同下层降水云系"连接",形成"ND"楔形区域,是降水即将开始的一个信号;降水发展阶段大风区底高变化与雨势有较好的对应关系,大风区底高持续下降并维持某一高度后的30 min内,雨势增强明显,随着大风区底高的快速升高,雨强也迅速减弱。降水末期中层"ND"的出现预示着降水云系逐渐消散,风向杆位置的连续下降预示着降水即将减弱停止。逆风区断裂位置及边缘地带对应着强降水的落区。由雷达基数据计算出的平均散度信息较好地反映了此次降水的动力学特征。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号