首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   8篇
大气科学   19篇
地球物理   25篇
地质学   57篇
海洋学   10篇
天文学   31篇
自然地理   2篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   5篇
  2016年   9篇
  2015年   5篇
  2014年   10篇
  2013年   18篇
  2012年   7篇
  2011年   8篇
  2010年   9篇
  2009年   7篇
  2008年   6篇
  2007年   7篇
  2006年   5篇
  2005年   6篇
  2004年   3篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1993年   2篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有144条查询结果,搜索用时 187 毫秒
51.
This paper addresses the issue of missing data reconstruction for partially sampled, two-dimensional, rectangular grid images of differentiable random fields. We introduce a stochastic gradient–curvature (GC) reconstruction method, which is based on the concept of a random field model defined by means of local interactions (constraints). The GC reconstruction method aims to match the gradient and curvature constraints for the entire grid with those of the sample using conditional Monte Carlo simulations that honor the sample values. The GC reconstruction method does not assume a parametric form for the underlying probability distribution of the data. It is also computationally efficient and requires minimal user input, properties that make it suitable for automated processing of large data sets (e.g. remotely sensed images). The GC reconstruction performance is compared with established classification and interpolation methods for both synthetic and real world data. The impact of various factors such as domain size, degree of thinning, discretization, initialization, correlation properties, and noise on GC reconstruction performance are investigated by means of simulated random field realizations. An assessment of GC reconstruction performance on real data is conducted by removing randomly selected and contiguous groups of points from satellite rainfall data and an image of the lunar surface.  相似文献   
52.
We consider an expanding three-dimensional (3-D) piston as a driver of an MHD shock wave. It is assumed that the source-region surface accelerates over a certain time interval to achieve a particular maximum velocity. Such an expansion creates a large-amplitude wave in the ambient plasma. Owing to the nonlinear evolution of the wavefront, its profile steepens and after a certain time and distance a discontinuity forms, marking the onset of the shock formation. We investigate how the formation time and distance depend on the acceleration phase duration, the maximum expansion velocity (defining also acceleration), the Alfvén velocity (defining also Mach number), and the initial size of the piston. The model differs from the 1-D case, since in the 3-D evolution, a decrease of the wave amplitude with distance must be taken into account. We present basic results, focusing on the timing of the shock formation in the low- and high-plasma-beta environment. We find that the shock-formation time and the shock-formation distance are (1) approximately proportional to the acceleration phase duration; (2) shorter for a higher expansion velocity; (3) larger in a higher Alfvén speed environment; (4) only weakly dependent on the initial source size; (5) shorter for a stronger acceleration; and (6) shorter for a larger Alfvén Mach number of the source surface expansion. To create a shock causing a high-frequency type II burst and the Moreton wave, the source region expansion should, according to our results, achieve a velocity on the order of 1000 km?s?1 within a few minutes, in a low Alfvén velocity environment.  相似文献   
53.
Three major mineralization events are recorded at the Rožná uranium deposit (total mine production of 23,000 t U, average grade of 0.24% U): (1) pre-uranium quartz-sulfide and carbonate-sulfide mineralization, (2) uranium, and (3) post-uranium quartz-carbonate-sulfide mineralization. (1) K–Ar ages for white mica from wall rock alteration of the pre-uranium mineralization style range from 304.5 ± 5.8 to 307.6 ± 6.0 Ma coinciding with the post-orogenic exhumation of the Moldanubian orogenic root and retrograde-metamorphic equilibration of the high-grade metamorphic host rocks. The fluid inclusion record consists of low-salinity aqueous inclusions, together with H2O-CO2-CH4, CO2-CH4, and pure CH4 inclusions. The fluid inclusion, paragenetic, and isotope data suggest that the pre-uranium mineralization formed from a reduced low-salinity aqueous fluid at temperatures close to 300°C. (2) The uraniferous hydrothermal event is subdivided into the pre-ore, ore, and post-ore substages. K–Ar ages of pre-ore authigenic K-feldspar range from 296.3 ± 7.5 to 281.0 ± 5.4 Ma and coincide with the transcurrent reorganization of crustal blocks of the Bohemian Massif and with Late Stephanian to Early Permian rifting. Massive hematitization, albitization, and desilicification of the pre-ore altered rocks indicate an influx of oxidized basinal fluids to the crystalline rocks of the Moldanubian domain. The wide range of salinities of fluid inclusions is interpreted as a result of the large-scale mixing of basinal brines with meteoric water. The cationic composition of these fluids indicates extensive interaction with crystalline rocks. Chlorite thermometry yielded temperatures of 260°C to 310°C. During this substage, uranium was probably leached from the Moldanubian crystalline rocks. The hydrothermal alteration of the ore substage followed, or partly overlapped in time, the pre-ore substage alteration. K–Ar ages of illite from ore substage alteration range from 277.2 ± 5.5 to 264.0 ± 4.3 Ma and roughly correspond with the results of chemical U–Pb dating of authigenic monazite (268 ± 50 Ma). The uranium ore deposition was accompanied by large-scale decomposition of biotite and pre-ore chlorite to Fe-rich illite and iron hydrooxides. Therefore, it is proposed that the deposition of uranium ore was mostly in response to the reduction of the ore-bearing fluid by interaction with ferrous iron-bearing silicates (biotite and pre-ore chlorite). The Th data on primary, mostly aqueous, inclusions trapped in carbonates of the ore substage range between 152°C and 174°C and total salinity ranges over a relatively wide interval of 3.1 to 23.1 wt% NaCl eq. Gradual reduction of the fluid system during the post-ore substage is manifested by the appearance of a new generation of authigenic chlorite and pyrite. Chlorite thermometry yielded temperatures of 150°C to 170°C. Solid bitumens that post-date uranium mineralization indicate radiolytic polymerization of gaseous and liquid hydrocarbons and their derivatives. The origin of the organic compounds can be related to the diagenetic and catagenetic transformation of organic matter in Upper Stephanian and Permian sediments. (3) K–Ar ages on illite from post-uranium quartz-carbonate-sulfide mineralization range from 233.7 ± 4.7 to 227.5 ± 4.6 Ma and are consistent with the early Tethys-Central Atlantic rifting and tectonic reactivation of the Variscan structures of the Bohemian Massif. A minor part of the late Variscan uranium mineralization was remobilized during this hydrothermal event.  相似文献   
54.
The Orlík water reservoir was built on the Vltava River in the places where the river crosses the geological unit called the Central Bohemian Pluton. Previous geological studies have disclosed no significant lateral inhomogeneity or fault zone in the close vicinity of the reservoir. However, repeated levellings, performed there in the 1950s and 1960s, revealed a systematic subsidence of the Vltava River valley. Using these measurements, the idea of the tectonic origin of the valley was even formulated. Recent seismic observations have also attracted attention to this region. Namely, a macroseismically felt earthquake occurred there on January 13, 2007, and many weaker earthquakes have been recorded by local seismic networks since 1992. To increase the accuracy of locating these seismic events, recently we have carried out refraction measurements along a short profile across the Orlík reservoir. These authors smoothed the observed travel times and derived a 1-D velocity model of the shallow crustal structure for the Orlík region. In the present paper, using the same refraction measurements, we study some anomalies in wave propagation beneath the Orlík reservoir. In particular, it is shown that the passage of seismic waves beneath the reservoir leads to their time delays and spectral changes. Moreover, we have also recognised similar time delays in earlier data from the nearby international profile CEL09 in the places where the profile crosses the Orlík reservoir.  相似文献   
55.
In Sawmill Canyon, located near the eastern margin of the Tuolumne batholith, central Sierra Nevada, California, a series of petrologically and structurally complex, magmatic sheeted zones intrude older granodioritic units (Kuna Crest and equigranular Half Dome) and in one case truncate these units along a sharp contact. These sheeted zones (a) consist of numerous batches of (now frozen) magma, (b) display clear outward growth directions, (c) were actively deforming during and after emplacement resulting in magmatic folds, faults and multiple magmatic mineral fabrics, and (d) are the location of numerous, but localized magma flow structures (schlieren-bounded tubes, troughs, megacryst-rich pipes) and instabilities (load casts, flame structures, slumps, diapirs, ridge and pillar structures). Geochemical data indicate that the sheeted zones largely consist of magmas derived from the Half Dome granodiorite with some late Cathedral Peak granodiorite pulses, and with fractionation and flow sorting forming widespread layering in the above structures.  相似文献   
56.
Boundary-Layer Meteorology - Unique data from a 100-m meteorological mast located on the windward side of the Dinaric Alps, Croatia, are compared to high-resolution Weather Research and Forecasting...  相似文献   
57.
The ∼340 Ma Knížecí Stolec durbachitic pluton was emplaced as a deep-seated cone-sheet-bearing ring complex into the Křišt’anov granulite body (Moldanubian Unit, Bohemian Massif). Prior to the emplacement of the durbachitic magma, the steep sub-concentric metamorphic foliation in the granulite formed due to intense ductile folding during high-grade retrograde metamorphism. Subsequently, the durbachitic pluton intruded discordantly into the granulite at around ∼340 Ma. The steep margin-parallel magmatic fabric in the durbachitic rocks may have recorded intrusive strain during emplacement. After the emplacement, but prior to the final solidification, the pluton was overprinted by the regional flat-lying fabric under lower pressure–temperature conditions (T = 765 ± 53°C; P = 0.76 ± 0.15 GPa). Based on this study and comparison with other ultrapotassic plutons, we suggest that the flat-lying fabrics, widespread throughout the exhumed lower to middle crust (Moldanubian Unit), exhibit major variations in character, intensity, kinematics, and shape of the fabric ellipsoid. These fabrics may have formed at different structural levels and in different parts of the root prior to ~337 Ma. Therefore, we suggest that this apparently “single” orogenic fabric recorded multiple deformation events and heterogenous finite deformation rather than reflecting a single displacement field within the orogenic root.  相似文献   
58.
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号