首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   8篇
大气科学   19篇
地球物理   25篇
地质学   57篇
海洋学   10篇
天文学   31篇
自然地理   2篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   5篇
  2016年   9篇
  2015年   5篇
  2014年   10篇
  2013年   18篇
  2012年   7篇
  2011年   8篇
  2010年   9篇
  2009年   7篇
  2008年   6篇
  2007年   7篇
  2006年   5篇
  2005年   6篇
  2004年   3篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1993年   2篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有144条查询结果,搜索用时 15 毫秒
31.
32.
Estuarine turbidity maxima (ETMs) are sites of intense mineralisation of land-derived particulate organic matter (OM), which occurs under oxic/suboxic oscillating conditions owing to repetitive sedimentation and resuspension cycles at tidal and neap-spring time scales. To investigate the biogeochemical processes involved in OM mineralisation in ETMs, an experimental set up was developed to simulate in vitro oxic/anoxic oscillations in turbid waters and to follow the short timescale changes in oxygen, carbon, nitrogen, and manganese concentration and speciation. We present here the results of a 27-day experiment (three oxic periods and two anoxic periods) with an estuarine fluid mud from the Gironde estuary. Time courses of chemical species throughout the experiment evidenced the occurrence of four distinct characteristic periods with very different properties. Steady oxic conditions were characterised by oxygen consumption rates between 10 and 40 μmol L−1 h−1, dissolved inorganic carbon (DIC) production of 9–12 μmol L−1 h−1, very low NH4+ and Mn2+ concentrations, and constant NO3 production rates (0.4 - 0.7 μmol L−1 h−1) due to coupled ammonification and nitrification. The beginning of anoxic periods (24 h following oxic to anoxic switches) showed DIC production rates of 2.5–8.6 μmol L−1 h−1 and very fast NO3 consumption (5.6–6.3 μmol L−1 h−1) and NH4+ production (1.4–1.5 μmol L−1 h−1). The latter rates were positively correlated to NO3 concentration and were apparently caused by the predominance of denitrification and dissimilatory nitrate reduction to ammonia. Steady anoxic periods were characterised by constant and low NO3 concentrations and DIC and NH4+ productions of less than 1.3 and 0.1 μmol L−1 h−1, respectively. Mn2+ and CH4 were produced at constant rates (respectively 0.3 and 0.015 μmol L−1 h−1) throughout the whole anoxic periods and in the presence of nitrate. Finally, reoxidation periods (24–36 h following anoxic to oxic switches) showed rapid NH4+ and Mn2+ decreases to zero (1.6 and 0.8–2 μmol L−1 h−1, respectively) and very fast NO3 production (3 μmol L−1 h−1). This NO3 production, together with marked transient peaks of dissolved organic carbon a few hours after anoxic to oxic switches, suggested that particulate OM mineralisation was enhanced during these transient reoxidation periods. An analysis based on C and N mass balance suggested that redox oscillation on short time scales (day to week) enhanced OM mineralisation relative to both steady oxic and steady anoxic conditions, making ETMs efficient biogeochemical reactors for the mineralisation of refractory terrestrial OM at the land-sea interface.  相似文献   
33.
The predicted Draconid meteor shower outburst during October 2011 had been observed by a portion of the Croatian Meteor Network whose stations encountered clear weather. A total of 95 Draconid orbits have been calculated from 18 contributing stations, and in this paper we present results for 63 orbits obtained from the fully automatic observation and processing pipeline. Two methods of trajectory estimation were applied, showing better fit results using a linearly changing velocity model versus a constant velocity model. The estimated mean radiant position has been found to be at RA = 262.6°, Dec = +55.7°, with estimated geocentric velocity Vg = 20.7 km/s.  相似文献   
34.
We analyse the differences in infrared circumstellar dust emission between oxygen-rich Mira and non-Mira stars, and find that they are statistically significant. In particular, we find that these stars segregate in the K–[12] versus [12]–[25] colour–colour diagram, and have distinct properties of the IRAS LRS spectra, including the peak position of the silicate emission feature. We show that the infrared emission from the majority of non-Mira stars cannot be explained within the context of standard steady-state outflow models.
The models can be altered to fit the data for non-Mira stars by postulating non-standard optical properties for silicate grains, or by assuming that the dust temperature at the inner envelope radius is significantly lower (300–400 K) than typical silicate grain condensation temperatures (800–1000 K) . We argue that the latter is more probable and provide detailed model fits to the IRAS LRS spectra for 342 stars. These fits imply that two-thirds of non-Mira stars and one-third of Mira stars do not have hot dust (>500 K) in their envelopes.
The absence of hot dust can be interpreted as a recent (∼100 yr) decrease in the mass-loss rate. The distribution of best-fitting model parameters agrees with this interpretation and strongly suggests that the mass loss resumes on similar time-scales. Such a possibility appears to be supported by a number of spatially resolved observations (e.g. recent Hubble Space Telescope images of the multiple shells in the Egg Nebula) and is consistent with new dynamical models for mass loss on the asymptotic giant branch.  相似文献   
35.
A dravite from Yemen of near end-member composition was treated in air and hydrogen atmospheres at 600–900 °C to reveal changes in Mg and Al order over the octahedrally coordinated Y and Z sites, and to explore related changes in the characteristic vibrational bands in the principal (OH)-stretching frequency. Relevant information was obtained using electron microprobe analysis (EMPA), structural refinement (SREF) and polarized infrared (IR) single-crystal spectroscopy. Overall, the EMPA, SREF and IR data show that only minor changes occur during thermal treatment up to at least 800 °C, including variations in structural parameters, Mg–Al order–disorder and (OH)-stretching bands, indicating limited hydrogen loss. Untreated and treated dravite samples have very similar long-range and short-range atomic structures, which may be related to the occurrence of stable Al–Mg extended clusters around the O1 (=W) and O3 (=V) sites: W(F)–Y(MgMgMg)–V(OH)3Z[AlAlAlAlAl(Al,Mg)]; W(OH)–Y(MgMgAl)–V(OH)3Z[AlAlAlAlAl(Al,Mg)]; W(O2–)–Y(AlAlAl)–V(OH)3Z[AlAlAlAlAl(Al,Mg)]. These extended clusters remain stable to temperatures close to the observed start of decomposition (~900 °C).  相似文献   
36.
The influence of geomorphological factors to Hg contamination of the Idrijca River alluvial sediments because of the historical mining and ore roasting activities has been studied. Main source of Hg in alluvial sediments was dumping of ore roasting residues and mining waste into the river channel and its erosion downstream. The position of the material in relation to the geomorphological properties is highly related with its Hg content. Floodplains were found to be the most contaminated geomorphological units (mean Hg content 335 mg/kg), with Hg concentration rapidly dropping in the first terrace (155 mg/kg). The least contaminated material was found in the higher terraces (3.8 mg/kg). Sampling upstream Idrija (average Hg content is 22.1 mg/kg) shows that not only mine and ore roasting plant increased Hg levels in alluvial deposits but also contaminated sites upstream Idrija contribute to Hg contamination. Geochemical background for alluvial sediments for this area is estimated to be 0.75 mg/kg. Downstream Idrija, 9 hotspots were determined where highly contaminated material is actively eroded and carries a high risk of further contamination of the So?a River and northern Adriatic Sea ecosystems.  相似文献   
37.
The aim of this research was to determine how fast the level of heavy metal concentrations in the air decreases in relation to increasing distance from the source of pollution and what the influence area is of the zinc smelting plant which existed for 100 years in Celje. In that period it produced approximately 580,000 tons of raw Zn from sphalerite ore by the pyrometallurgical process. The production left behind a heavily contaminated area, where the concentrations of Pb and Zn in the soil can be expressed as a percentage. A model has been made on the basis of the data of concentrations of Zn and Cd in the soil and attic dust regarding the distance and direction from the source of the pollution. Because Celje lies in a basin we chose a linear model, which describes the decreasing of the concentrations of Zn and Cd only in one direction. Sampling has been conducted on the four river valleys which stretch from the source of the pollution in all four directions: north, west, south and east, up to 13 km from the source. The power function with a negative exponent was used. With the solution to the calculated functions according to the distance, we can estimate the theoretical distance when the concentrations drop to the natural background level. The range of influence of the zinc smelting plant has been estimated to be between 14 and 52 km for the presence of anthropogenic Zn in attic dust and between 9 and 14 km for the presence of anthropogenic Zn in the soil, depending on the direction from the plant. Correlations between the measured values and the ones from the model are high: from 0.75 up to 0.98.  相似文献   
38.
In Sawmill Canyon, located near the eastern margin of the Tuolumne batholith, central Sierra Nevada, California, a series of petrologically and structurally complex, magmatic sheeted zones intrude older granodioritic units (Kuna Crest and equigranular Half Dome) and in one case truncate these units along a sharp contact. These sheeted zones (a) consist of numerous batches of (now frozen) magma, (b) display clear outward growth directions, (c) were actively deforming during and after emplacement resulting in magmatic folds, faults and multiple magmatic mineral fabrics, and (d) are the location of numerous, but localized magma flow structures (schlieren-bounded tubes, troughs, megacryst-rich pipes) and instabilities (load casts, flame structures, slumps, diapirs, ridge and pillar structures). Geochemical data indicate that the sheeted zones largely consist of magmas derived from the Half Dome granodiorite with some late Cathedral Peak granodiorite pulses, and with fractionation and flow sorting forming widespread layering in the above structures.  相似文献   
39.
The crop model CERES-Barley was used to assess the impacts of increased concentration of atmospheric CO2 on growth and development of the most important spring cereal in Central and Western Europe, i.e., spring barley, and to examine possible adaptation strategies. Three experimental regions were selected to compare the climate change impacts in various climatic and pedological conditions. The analysis was based on multi-year crop model simulations run with daily weather series obtained by stochastic weather generator and included two yield levels: stressed yields and potential yields. Four climate change scenarios based on global climate models and representing 2 × CO2 climate were applied. Results: (i) The crop model is suitable for use in the given environment, e.g., the coefficient of determination between the simulated and experimental yields equals 0.88. (ii) The indirect effect related to changed weather conditions is mostly negative. Its magnitude ranges from ?19% to +5% for the four scenarios applied at the three regions. (iii) The magnitude of the direct effect of doubled CO2 on the stressed yields for the three test sites is 35–55% in the present climate and 25–65% in the 2 × CO2 climates. (iv) The stressed yields would increase in 2 × CO2 conditions by 13–52% when both direct and indirect effects were considered. (v) The impacts of doubled CO2 on potential yields are more uniform throughout the localities in comparison with the stressed yields. The magnitude of the indirect and direct effects ranges from ?1 to ?9% and from +31 to +33%, respectively. Superposition of both effects results in 19–30% increase of the potential yields. (vi) Application of the earlier planting date (up to 60 days) would result in 15–22% increase of the yields in 2 × CO2 conditions. (vii) Use of a cultivar with longer vegetation duration would bring 1.5% yield increase per one extra day of the vegetation season. (viii) The initial water content in the soil water profile proved to be one of the key elements determining the spring barley yield. It causes the yields to increase by 54–101 kg.ha?1 per 1% increase of the available soil water content on the sowing day.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号