A new pyroclastic stratigraphy is presented for the island of Ischia, Italy, for the period ∼75–50 ka BP. The data indicate
that this period bore witness to the largest eruptions recorded on the island and that it was considerably more volcanically
active than previously thought. Numerous vents were probably active during this period. The deposits of at least 10 explosive
phonolite to basaltic-trachyandesite eruptions are described and interpreted. They record a diverse range of explosive volcanic
activity including voluminous fountain-fed ignimbrite eruptions, fallout from sustained eruption columns, block-and-ash flows,
and phreatomagmatic eruptions. Previously unknown eruptions have been recognised for the first time on the island. Several
of the eruptions produced pyroclastic density currents that covered the whole island as well as the neighbouring island of
Procida and parts of the mainland. The morphology of Ischia was significantly different to that seen today, with edifices
to the south and west and a submerged depression in the centre. The largest volcanic event, the Monte Epomeo Green Tuff (MEGT)
resulted in caldera collapse across all or part of the island. It is shown to comprise at least two thick intracaldera ignimbrite
flow-units, separated by volcaniclastic sediments that were deposited during a pause in the eruption. Extracaldera deposits
of the MEGT include a pumice fall deposit emplaced during the opening phases of the eruption, a widespread lithic lag breccia
outcropping across much of Ischia and Procida, and a distal ignimbrite in south-west Campi Flegrei. During this period the
style and magnitude of volcanism was dictated by the dynamics of a large differentiated magma chamber, which was partially
destroyed during the MEGT eruption. This contrasts with the small-volume Holocene and historical effusive and explosive activity
on Ischia, the timing and distribution of which has been controlled by the resurgence of the Monte Epomeo block. The new data
contribute to a clearer understanding of the long-term volcanic and magmatic evolution of Ischia. 相似文献
The components and carbon isotope of gases in inclusions are one of the most important geochemical indexes for gas pools. The analysis results of the components and carbon isotope of gases from inclusions in reservoir layers of Upper Palaeozoic gas pools in the Ordos Basin show that most inclusions grown in reservoir sandstone are primary inclusions. There is only a little difference about the components and carbon isotope between the well gases and the secondary inclusions gases. This indicated that the epigenetic change of gas pools is little. This difference between the well gases and the secondary inclusions gases is caused by two reasons: (i) The well gases come from several disconnected sand bodies buried in a segment of depth, while the inclusion gases come from a point of depth. (ii) The secondary inclusions trapped the gases generated in the former stage of source rock gas generation, and the well gases are the mixed gases generated in all the stages. It is irresponsible to reconstruct the palaeo-temperature and palaeo-pressure under which the gas pool formed using carbon dioxide inclusions. 相似文献
“Milanggouwan stratigraphical section” named lately takes down 27 cycles of alternately evolutionary histories of desert depositions
in the Mu Us area with the fluviolacustrine facies and palaeosols since 150 ka B. P. Studies show that the sedimentary form
was induced by the growth and decline and confrontation each other between the winter monsoon and the summer monsoon of East
Asia in the past 150 ka.
Project supported by the National Natural Science Foundation of China (Grant No. 49473192). 相似文献
The Pingluo area, as an experimental study area in Yinchuan, has been subjected to major environmental degradation due to soil salinization problems. Soil salinization is one of the main problems of land degradation in arid and semiarid regions. In the present study, remote sensing was integrated with mathematical modeling to evaluate soil salinization adequately. To detect soil salinization, soil water content and electrical conductivity of soil samples were analyzed. The reflectance of soil samples was measured using a spectrometer (SR-3500) with 1024 bands. Indices of soil salinity, vegetation and drought were analyzed using Landsat images over the study area. Based on Landsat images, physicochemical analysis, reflectance of sensitive bands for soil salinization and environmental indices, canopy response salinity index (CRSI), perpendicular drought index (PDI) and enhanced normalized difference vegetation index (ENDVI), a new model was established for simulation and prediction of soil salinization in the study area. Correlation analyses and multiple regression methods were used to construct an accurate model. The results showed that green, blue and near-infrared light was significantly correlated with soil salinity and that the spectral parameters improved this correlation significantly. Therefore, the model was more effective when combining spectral parameters with sensitive bands with modeling. After mathematical transformation of soil reflectance, the correlations of bands sensitive to soil salinization were 0.739 and 0.7 for electrical conductivity and water content, respectively. After transformation of vegetation reflectance, the correlation coefficient of soil salinity became 0.577. After inversion of the model based on soil hyperspectral and water content, the significance became 0.871 and 0.726, respectively, which can be used to predict soil salinity and water content. The spectral soil salinity model had a coefficient of 0.739 for soil salinity prediction. Among the salinity indices, the CRSI was selected as the most significant, with R2 of 0.571, whereas the R2 for PDI reached only 0.484. Among the vegetation indices, the ENDVI had the highest response to soil salinity, with R2 of 0.577. After scale conversion, the correlation percentages between CRSI and measured soil salinity and between ENDVI and measured soil salinity increased to 16.2% and 8.5%, respectively. Following the correlation between PDI and soil water content, the percentage of correlation increased to 11.6%. The integration of hyperspectral remote sensing, ground methods and an inversion method for salinity is a very important and effective technique for rapid and nondestructive monitoring of soil salinization.
Ocean/ice interaction at the base of deep-drafted Antarctic ice shelves modifies the physical properties of inflowing shelf
waters to become Ice Shelf Water (ISW). In contrast to the conditions at the atmosphere/ocean interface, the increased hydrostatic
pressure at the glacial base causes gases embedded in the ice to dissolve completely after being released by melting. Helium
and neon, with an extremely low solubility, are saturated in glacial meltwater by more than 1000%. At the continental slope
in front of the large Antarctic caverns, ISW mixes with ambient waters to form different precursors of Antarctic Bottom Water.
A regional ocean circulation model, which uses an explicit formulation of the ocean/ice shelf interaction to describe for
the first time the input of noble gases to the Southern Ocean, is presented. The results reveal a long-term variability of
the basal mass loss solely controlled by the interaction between waters of the continental shelf and the ice shelf cavern.
Modeled helium and neon supersaturations from the Filchner–Ronne Ice Shelf front show a “low-pass” filtering of the inflowing
signal due to cavern processes. On circumpolar scales, the simulated helium and neon distributions allow us to quantify the
ISW contribution to bottom water, which spreads with the coastal current connecting the major formation sites in Ross and
Weddell Seas.
Houba oil sand in frontier Longmenshan Mountain is one of the most typically important unconventional resources. The basic reservoir characteristics of oil sand and the main factors affecting reservoir quality were examined in this article based on porosity, permeability, and mercury porosimetry measurements; thin section analyses; SEM observation; and X-ray diffraction analysis. This study shows that the oil-bearing sandstone reservoir is mainly medium?coarse-grained sublitharenite and litharenite. The main pore type is intergranular pores, including residual primary intergranular pores, dissolved intergranular pores, and dissolved intragranular pores; fractures are common in this study area. The quality of sandstone reservoir is of high porosity and high permeability with a high oil saturation of 89.84 %. It is indicated that the main controlling factors of the reservoir in the study area include deposition, diagenesis, and tectonism. Deposition laid a foundation to porosity evolution, and channel sand is the most favorable depositional facies for the reservoir. Diagenetic alterations are the keys to reservoir evolution; dissolution and chlorite coatings cementation play an effective role in the generation and preservation of pores. Compaction, carbonate cementation, and quartz overgrowth cause many damages to the reservoir porosity. Fractures caused by structural breakages can improve the reservoir permeability and they also can provide fluid migration pathways to the late corrosion, which formed a lot of corroded fissures as reservoir and percolation spaces. 相似文献
The diffusion in a shearing oscillatory flow from an instantaneous surface point source is considered. An analytical solution
is obtained by Fourier transform. The results show that, for three dimensional diffusion in an oscillatory flow with constant
shear, the distribution of the contaminant follows the multivariate Gaussian distribution rule. When the frequency is very
high, or the time very short, the shear does not influence the diffusion. For moderate values of time, there are fluctuations
with longitudinal variance. For large values of time the longitudinal variance increases as t, and the peak concentration
decreases as t−1.5, which are faster than those in a flow without shear, but much slower than those in a steady flow, where the longitudinal
variance increases as t3 and the peak concentration decreases as t−2.5. The contaminant patch is elongated in the longitudinal direction of the shear flow and moves back and forth with the water
motion.
Contribution No. 1306 from the Institute of Oceanology, Academia Sinica. Received July 12, 1985 相似文献
In this study, two designs for a buoy capable of supporting a 10 kW wind turbine and its tower were developed to operate at the University of New Hampshire’s Center of Ocean Renewable Energy testing site located off the Isles of Shoals, New Hampshire. The buoys are to be moored by a catenary chain system. To evaluate wave response, two Froude-scaled models were constructed, tested, and compared at the Ocean Engineering wave tank at the University of New Hampshire. These buoys have been implemented and compared with wave tank measurements of the spar displacement at a reference elevation 2.44 m above the mean water level. 相似文献