首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17012篇
  免费   4064篇
  国内免费   6466篇
测绘学   3228篇
大气科学   2227篇
地球物理   3267篇
地质学   11894篇
海洋学   2894篇
天文学   258篇
综合类   1365篇
自然地理   2409篇
  2024年   242篇
  2023年   581篇
  2022年   1180篇
  2021年   1475篇
  2020年   1139篇
  2019年   1236篇
  2018年   1109篇
  2017年   1045篇
  2016年   1077篇
  2015年   1322篇
  2014年   1227篇
  2013年   1459篇
  2012年   1598篇
  2011年   1549篇
  2010年   1532篇
  2009年   1386篇
  2008年   1413篇
  2007年   1331篇
  2006年   1302篇
  2005年   1031篇
  2004年   754篇
  2003年   540篇
  2002年   571篇
  2001年   478篇
  2000年   382篇
  1999年   173篇
  1998年   63篇
  1997年   46篇
  1996年   34篇
  1995年   17篇
  1994年   24篇
  1993年   18篇
  1992年   16篇
  1991年   14篇
  1990年   24篇
  1989年   8篇
  1988年   17篇
  1987年   13篇
  1986年   8篇
  1985年   12篇
  1984年   17篇
  1983年   17篇
  1982年   10篇
  1981年   6篇
  1979年   14篇
  1978年   6篇
  1976年   5篇
  1964年   2篇
  1957年   3篇
  1954年   12篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
951.
Rainfall can cause serious soil loss in the Loess Plateau hilly and gully region, but little focus has been placed on the extreme rainstorm effects on unpaved loess road soil erosion. A field survey method was used to investigate the erosional effects of the "7·26" heavy rainfall event on unpaved loess roads in the Jiuyuangou watershed of the Loess Plateau, China. The results showed that the average and maximum widths of the eroded gullies that formed on the unpaved roads were 0.65-1.48 m and 1.00-3.60 m, respectively. The average and maximum depths of theeroded gullies were 0.42-1.13 m and 0.75-4.30 m, respectively. The average width-to-depth ratio was 1.31, indicating that the widening effect was greater than the downcutting effect in the eroded gullies. In addition, the gully density ranged from 0.07 to 0.29 m m~(-2), and the road surface dissection degree ranged from 0.03 to 0.41 km~2 km~(-2). Eroded gullies generally developed at the slope toe of the cut bank side. The average eroded gully width and depth at turns in the road were 1.47-2.64 times and 1.30-3.47 times greater, respectively, than those in other road sections. The road erosion modulus increased from the upper section to the lower section of the roads. The average road erosion modulus of the study catchment was 235,000 t km~(-2). Turns in the road were associated with collapses, sinkholes and other gravitational erosion phenomena. The amount of road erosion under extreme rainfall conditions is mainly related to the interactions among road length, width, slope and soil bulk density. Our results provide a useful reference for developing further measures for preventing road erosion on the Loess Plateau.  相似文献   
952.
The availability of high-resolution satellite precipitation measurement products provides an opportunity to monitor precipitation over large and complex terrain and thus accurately evaluate the climatic, hydrological and ecological conditions in those regions. The Global Precipitation Measurement(GPM) mission is an important new program designed for global satellite precipitation estimation, but little information has been reported on the applicability of the GPM’s products for the Tibetan Plateau(TP). The object of this study is to evaluate the accuracy of the Integrated Multi-Satellite Retrievals for GPM(IMERG) Final Run product under different terrain and climate conditions over the TP by using 78 ground gauges from April 2014 to December 2017. The results showed the following:(1) the 3-year average daily precipitation estimation in the IMERG agrees well with the rain gauge observations(R~2=0.58, P0.01), and IMERG also has a considerable ability to detect precipitation, as indicated by a high probability of detection(78%-98%) and critical success index(65%-85%);(2) IMERG performed better at altitudes from 3000 m to 4000 m with a small relative bias(RB) of 6.4%. Precipitation change was not significantly affected by local relief;(3) the climate system of the TP was divided into four climate groups with a total of 12 climate types based on the K?ppen climate classification system, and IMERG performed well in all climate types with the exception of the arid-desert-cold climate(Bwk) type. Furthermore, although IMERG showed the potential to detect snowfall, it still exhibits deficiencies in identifying light and moderate snow. These results indicate that IMERG could provide more accurate precipitation data if its retrieval algorithm was improved for complex terrain and arid regions.  相似文献   
953.
Recently, various toppling slopes have emerged with the development of hydropower projects in the western mountainous regions of China. The slope on the right bank of the Laxiwa Hydropower Station, located on the mainstream of the Yellow River in the Qinghai Province of Northwest China, is a typical hard rock slope. Further, its deformation characteristics are different from those of common natural hard rock toppling. Because this slope is located close to the dam of the hydropower station, its deformation mechanism has a practical significance. Based on detailed geological engineering surveys, four stages of deformation have been identified using discrete element numerical software and geological engineering analysis methods, including toppling creep, initial toppling deformation, intensified toppling deformation, and current slope formation. The spatial and time-related deformation of this site also exhibited four stages, including initial toppling, toppling development, intensification of toppling, and disintegration and collapse. Subsequently, the mechanism of toppling and deformation of the bank slope were studied. The results of this study exhibit important reference value for developing the prevention–control design of toppling and for ensuring operational safety in the hydropower reservoir area.  相似文献   
954.
Zonag, Kusai, Hedin Noel and Yanhu Lakes are independent inland lakes in the Hoh Xil region on the Qinghai-Tibet Plateau. In September2011, Zonag Lake burst after the water level had increased for many years. Floods flowed through Kusai and Hedin Noel Lakes into Yanhu Lake; since then, the four small endorheic catchments merged into one larger catchment. This hydrological process caused the rapid shrinkage of Zonag Lake and continuous expansion of Yanhu Lake. In this study,based on satellite images, meteorological data and field investigations, we examined the dynamic changes in the four lakes and analyzed the influencing factors. The results showed that before 2011, the trends in the four lake areas were similar and displayed several stages. The change in the area of Zonag Lake corresponded well to the change in annual precipitation(AP), but the magnitude of the change was less than that of a non-glacier-fed lake. Although increased precipitation was the dominant factor that caused Zonag Lake to expand, increased glacier melting and permafrost thawing due to climate warming also had significant effects. After the 2011 outburst of Zonag Lake, due to the increasing AP and accelerating glacier melting, the increases in water volume of the three lakes were absorbed by Yanhu Lake, and Yanhu Lake expanded considerably. According to the rapid growth rates in water level and lake area, Yanhu Lake is likely to burst in 1-2 years.  相似文献   
955.
Detecting and attributing vegetation changes in Taihang Mountain,China   总被引:1,自引:0,他引:1  
Attributing vegetation changes provide fundamental information for ecosystem management,especially in mountainous areas which has vulnerable ecosystems. Based on the Normalized Difference Vegetation Index(NDVI) data, the spatial-temporal change of vegetation was detected in Taihang Mountain(THM) from 2000 to 2014. The topographical factors were introduced to interpret the response of vegetation variation to climate change and human activities. Results showed that the avegaged NDVI during growing season showed a single-peak curve distribution, with the largest value(0.628) among 1600-1800 m. A significant greening trend was detected in THM, with the largest increasing rate(0.0078 yr~(-1)) among the elevation of1600-1800 m and slope gradient between 3~5°. The partial correlation and multiple correlation analyses indicated that vegetation variation in more than81.8% pixels of the THM was mainly impacted by human activities. In the low elevation zones less than1000 m, increasing precipitation is the principle factor promoting vegetation restoration, whereas in the high elevation zones of THM, temperature is the restricted factors impacting vegetation variation.Considering the dramatic climate change in the future,further studies should be conducted to explore inherent mechanism of vegetation growth to dynamic environment changes.  相似文献   
956.
Ascertaining the relationship between "source-sink" landscape and non-point source(NPS) pollution is crucial for reducing NPS pollution, however, it is not easy to realize this target on cell unit scale. To reveal the relationships between "sourcesink" landscape and NPS pollution based on cell units of a small catchment in the Three Gorges Reservoir Region(TGRR), the runoff and nutrient yields were simulated first by rainfall events on a cell unit scale based on the Annualized AGricultural Non-Point Source Pollution Model(AnnAGNPS). Landscape structure and pattern were quantified with "sourcesink" landscape indicators based on cell units including landscape area indices and locationweighted landscape indices. The results showed that:the study case of small Wangjiagou catchment highlighted a good prediction capability of runoff and nutrient export by the AnnAGNPS model. Throughout the catchment, the spatial distribution trends of four location-weighted landscape indices were similar to the trends of simulated total nitrogen(TN) and total phosphorus(TP), which highlighted the importance of spatial arrangement of "source" and "sink" landscape types in a catchment when estimating pollutant loads. Results by Pearson correlation analysis indicated that the location-weighted landscape index provided a more comprehensive account of multiple factors, and can better reflect NPS-related nutrient loss than other landscape indices applied in single-factor analysis. This study provides new findings for applying the "source-sink" landscape indices based on cell units in small catchments to explain the effect of "source-sink" landscape on nutrient export based on cell unit, and helps improve the understanding of the correlation between "source-sink" landscape and NPS pollution.  相似文献   
957.
The forest litter is an essential reservoir of nutrients in forests, supplying a large part of absorbable base cations(BC) to topsoil, and facilitating plant growth within litter-soil system. To characterize elevational patterns of base cation concentrations in the forest litter and topsoil, and explore the effects of climate and tree species, we measured microclimate and collected the forest litter and topsoil(0-10 cm) samples across an elevational range of more than 2000 m(1243 ~ 3316 m a.s.l.),and analyzed the concentrations of BC in laboratory. Results showed that: 1) litter Ca concentration displayed a hump-shaped pattern along the elevational gradients, but litter K and Mg showed saddle-shaped patterns. Soil Ca concentration increased with elevation, while soil K and Mg had no significant changes. 2) Ca concentration in the forest litter under aspen(Populus davidiana) was significantly higher than that in all other species, but in topsoil, Ca concentration was higher under coniferous larch and fir(Larix chinensis and Abies fargesii). Litter K and Mg concentrations was higher under coniferous larch and fir, whereas there were nosignificant differences among tree species in the concentrations of K and Mg in topsoil. 3) Climatic factors including mean annual temperature(MAT), growing season precipitation(GSP) and non-growing season precipitation(NGSP) determined BC concentrations in the forest litter and topsoil. Soil C/N and C/P also influenced BC cycling between litter and soil. Observation along elevations within different tree species implies that above-ground tree species can redistribute below-ground cations, and this process is profoundly impacted by climate. Litter and soil Ca, K and Mg with different responses to environmental variables depend on their soluble capacity and mobile ability.  相似文献   
958.
2001-2015年中国植被覆盖人为影响的时空格局   总被引:3,自引:0,他引:3  
基于MODIS-NDVI和气温、降水数据,使用基于变异系数的人为影响模型定量计算了2001-2015年中国植被覆盖人为影响,辅以趋势分析、Hurst指数等方法探讨了中国植被覆盖人为影响的时空变化特征及未来演变趋势。研究发现:① 2001-2015年,中国植被覆盖人为影响由南向北空间分异愈发明显,年均值为-0.0102,植被覆盖在人类活动影响下轻微减少,负影响面积占51.59%,略大于正影响面积。② 中国植被覆盖人为影响年际变化特征明显,整体呈负影响波动减少趋势,降速为0.5%/10a,其中正影响、负影响均呈增大趋势,正影响增速(0.3%/10a)远大于负影响(0.02%/10a)。③ 2001-2015年间,中国植被覆盖人为正影响重心向东北方向移动,负影响重心向西南方向移动,东北部植被覆盖在人为影响下不断改善,西南部人类活动对植被破坏程度不断增大。④ 中国植被覆盖人为影响主要呈负影响减少和正影响增大趋势,面积占比分别为28.14%和25.21%,生态环境趋于改善。⑤ Hurst指数分析表明,中国植被覆盖人为影响未来演变趋势的反向特征强于正向特征,主要呈人为负影响先减少后增大趋势,面积占比15.59%。  相似文献   
959.
1960-2015年青海三江源地区降水时空特征   总被引:5,自引:0,他引:5  
青海三江源地区是中国生态系统最为敏感和脆弱的地区,其降水特别是生长季降水的波动,是影响本区及江河中下游水资源安全、生态系统可持续发展的关键因素。综合线性趋势、Mann-Kendall检验、BG分割算法、R/S、EEMD等多方法细致辨识了1960-2015年研究区降水量序列的时空特征。结果显示:① 三江源降水量总体呈现弱增趋势,21世纪以来降水量显著增加,各子源区气候倾向率不尽相同;② 年、季降水量自东南向西北递减,澜沧江源区夏季降水和黄河源区秋季降水呈弱减趋势,雨量弱减区在空间上呈斑块状分布;③ 年、季降水量年代际变化和增湿率的空间差异较明显,春夏季降水气候倾向率与经纬度、海拔的复相关性显著高于冬季;④ 20世纪90年代中后期,各子源区降水总体显现增强信号,并于2002年前后发生突变;⑤ 年际和低值年代际显著周期是造成降水量变动的主要因素;⑥ 除澜沧江源区夏季降水趋于减少外,其他年、季降水量变化呈现增幅不一的转湿趋势;⑦ 横向比较各子源区可见,长江源区降水变化更能表征高原气候变化。研究结果显示,研究区降水时空序列变化具有明显的区域和季节差异性特征,与以往类似研究存在些许差异,可见为有效提高气候序列演变过程及突变诊断的准确性,仍需进一步融合多方法实施集成分析。  相似文献   
960.
盛科荣  张红霞  赵超越 《地理研究》2019,38(5):1030-1044
城市网络关联格局影响因素的测度及其作用机理的解析是建立城市网络理论模型的关键环节。基于2017年中国电子信息100强企业网络视角构建城市网络,采用指数随机图模型定量测度了中国城市网络的影响因素,解析了城市网络生长发育的微观过程,并探索性的提出了理解中国城市网络发育机理的概念框架。研究发现:偏好依附效应和接收者(GDP)效应构成了中国城市网络中心性格局的微观基础,中国城市网络生长发育表现为择优选择的地理过程;互惠性链接深刻影响着城市间的关系格局,网络闭合机制逐步成为城市间链接关系的重要影响因素;空间距离对基于电子信息企业网络的城市网络约束作用并不明显,城市网络表现出在“流动空间”中生长发育的特征。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号