首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   3篇
  国内免费   10篇
测绘学   3篇
大气科学   8篇
地球物理   46篇
地质学   68篇
海洋学   17篇
天文学   46篇
综合类   7篇
自然地理   11篇
  2021年   1篇
  2020年   4篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   4篇
  2014年   7篇
  2013年   5篇
  2012年   8篇
  2011年   13篇
  2010年   13篇
  2009年   21篇
  2008年   11篇
  2007年   13篇
  2006年   10篇
  2005年   11篇
  2004年   7篇
  2003年   10篇
  2002年   8篇
  2001年   10篇
  2000年   5篇
  1999年   12篇
  1998年   6篇
  1997年   2篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有206条查询结果,搜索用时 242 毫秒
101.
In many wellbore stability analyses, the ability to forecast both the occurrence and extent of plastic deformation and failure hinges upon a fundamental understanding of deformation mode and failure mechanism in the reservoir rock. This study focuses on analyzing plastic zones, localized deformations, and failures around a borehole drilled overbalanced or underbalanced through a highly porous rock formation. Based on several laboratory experiments, porous rocks are prone to deform under both shear-induced dilation and shear-enhanced compaction mechanisms depending on the stress state. The shapes of the deformation and failure patterns around the borehole are shown, depending on the initial stress state and the local stress paths. The inquiry of the local stress paths in the near-wellbore zone facilitates the understanding of the reasons for different types of failure mechanisms, including the mixed-mode and the plastic deformation structures. The modification of the 2D plane strain condition by imitating third stress in the numerical scheme helps us bring the stress paths closer to the real state of loading conditions. Our modeling reveals that the transition from isotropic to anisotropic stress state is accompanied by an increase in the deviatoric part of effective shear tensor that leads to the development of inelastic deformation, degradation, and subsequent rock failure. Particular interest is devoted to the modeling of strain localization especially in compaction mode around a wellbore and computing the amount of stress concentration at the tips of dog-eared breakouts. Stress concentration can result in a change in irreversible deformation mode from dilatancy to compaction, elucidating the formation of the shear-enhanced compaction phenomenon at the failure tips in the direction of the minimum horizontal stress.  相似文献   
102.
Middle Miocene to Quaternary lavas on Kunashir Island in the southern zone of the Kurile Arc were examined for major, trace, and Sr–Nd–Pb isotope compositions. The lavas range from basalt through to rhyolite and the mafic lavas show typical oceanic island arc signatures without significant crustal or sub-continental lithosphere contamination. The lavas exhibit across-arc variation, with increasingly greater fluid-immobile incompatible element contents from the volcanic front to the rear-arc; this pattern, however, does not apply to some other incompatible elements such as B, Sb, and halogens. All Sr–Nd–Pb isotope compositions reflect a depleted source with Indian Ocean mantle domain characteristics. The Nd and Pb isotope ratios are radiogenic in the volcanic front, whereas Sr isotope ratios are less radiogenic. These Nd isotope ratios covary with incompatible element ratios such as Th/Nd and Nb/Zr, indicating involvement of a slab-derived sediment component by addition of melt or supercritical fluid capable of mobilizing these high field-strength elements and rare earth elements from the slab. Fluid mobile elements, such as Ba, are also elevated in all basalt suites, suggesting involvement of slab fluid derived from altered oceanic crust. The Kurile Arc lavas are thus affected both by slab sediment and altered basaltic crust components. This magma plumbing system has been continuously active from the Middle Miocene to the present.  相似文献   
103.
The tectonic environment of Kyushu, Japan is affected both by the subduction of the Philippine Sea plate and by the extensional tectonics related to rifting of Okinawa Trough at the eastern margin of the Eurasia Plate. We found that the Sendai fault zone acts as a channel for concurrent eruption of oceanic island basalt (OIB)-type and island arc (IA)-type basaltic rocks, propagating west to east in the Sendai region of southern Kyushu. The location of the Sendai fault zone is likely to correspond to the left-lateral shear zone in southern Kyushu as inferred by GPS Earth Observation Network. A similar magmatic association is present in the Beppu–Shimabara (BS) graben system in central Kyushu. The associate magmas of OIB-type rocks in Kyushu can be classified into typical, EM II-like and their intermediate OIB-type magmas in addition to MORB-like OIB-type magma in 87Sr/86Sr–Nb/Y systematics. Typical OIB-type and intermediate OIB-type magmas are erupted within the Sendai fault zone and BS graben system, respectively. The former is characterized by highest Nb/Y but low 87Sr/86Sr similar to MORB-like OIB-type magma erupted in northern Kyushu and the latter has intermediate Nb/Y and 87Sr/86Sr between typical and EM II-like OIB-type magmas. Almost all the IA-type rocks within the Sendai fault zone are generated from parental IA-type magma in Kyushu and characterized by weak crustal assimilation, having the lowest 87Sr/86Sr similar to typical OIB-type magma but the highest 143Nd/144Nd of arc magmas in Kyushu. The ages of both types of basaltic rocks within the Sendai fault zone range from 1.6 to <0.01?Ma clearly younger than those of andesitic rocks on northern and southern outsides of the fault zone and become younger from west to east. Initial formation of the fault zone has been induced by the counterclockwise rotation of southern Kyushu during the last 2?Ma as well as the BS graben system. Kyushu has continued to be split into three parts by the Sendai fault zone and BS graben during the Quaternary; northern, central, and southern zones. Their initial formation ages are likely to be linked to the initial rifting age of the middle Okinawa Trough back-arc basin.  相似文献   
104.
105.
Schumann resonances (SR) are the electromagnetic oscillations of the spherical cavity bounded by the electrically conductive Earth and the conductive but dissipative lower ionosphere (Schumann in Z Naturforsch A 7:6627–6628, 1952). Energetic emissions from the Sun can exert a varied influence on the various parameters of the Earth’s SR: modal frequencies, amplitudes and dissipation parameters. The SR response at multiple receiving stations is considered for two extraordinary solar events from Solar Cycle 23: the Bastille Day event (July 14, 2000) and the Halloween event (October/November 2003). Distinct differences are noted in the ionospheric depths of penetration for X-radiation and solar protons with correspondingly distinct signs of the frequency response. The preferential impact of the protons in the magnetically unshielded polar regions leads to a marked anisotropic frequency response in the two magnetic field components. The general immunity of SR amplitudes to these extreme external perturbations serves to remind us that the amplitude parameter is largely controlled by lightning activity within the Earth–ionosphere cavity.  相似文献   
106.
The kinetics of heterogeneous reactions of NO2 with 17 polycyclic aromatic hydrocarbons (PAHs) adsorbed on laboratory generated kerosene soot surface was studied over the temperature range (255–330) K in a low pressure flow reactor combined with an electron-impact mass spectrometer. The kinetics of soot-bound PAH consumption due to their desorption and reaction with NO2 were monitored using off-line HPLC measurements of their concentrations in soot samples as a function of reaction time, NO2 concentrations in the gas phase being analyzed by mass spectrometer. No measurable decay of PAHs due to the reaction with NO2 was observed under experimental conditions of the study (maximum NO2 concentration of 5.5 × 1014 molecule cm−3 and reaction time of 45 min), which allowed to determine the upper limits of the first-order rate constants for the heterogeneous reactions of 17 soot-bound PAHs with NO2: k < 5.0 × 10−5 s−1 (for most PAHs studied). Comparison of these results to previous studies carried on different carbonaceous substrates, showed that heterogeneous reactivity of PAHs towards NO2 is, probably, dependent on the substrate nature even for resembling, although different carbonaceous materials. Results show that particulate PAHs degradation by NO2 alone is of minor importance in the atmosphere  相似文献   
107.
Mechanisms by which dissimilatory iron-reducing bacteria utilize iron and manganese oxide minerals as terminal electron acceptors for respiration are poorly understood. In the absence of exogenous electron shuttle compounds, extracellular electron transfer is generally thought to occur through the interfacial contact area between mineral surfaces and attached cells. Possible alternative reduction pathways have been proposed based on the discovery of a link between an excreted quinone and dissimilatory reduction. In this study, we utilize a novel experimental approach to demonstrate that Shewanella putrefaciens reduces the surface of crystalline iron oxides at spatial locations that are distinct from points of attachment.  相似文献   
108.
109.
异常压力天然气藏(Anomalously Pressured Gas,APG)主要指“盆地中心”天然气系统(BCGS)中,天然气含量丰富,但开发程度相对较低的天然气资源。例如,美国怀俄明州Wind River盆地的面积约为8500mi^2,其USGS异常压力天然气资源量估计是900Tcf,但目前产气量累积不足1Tcf。丰富的天然气资源与开发程度的不平衡在所有“盆地中心”异常压力天然气藏中是很典型的。因此,对于蕴藏在BCGS中极其丰富的天然气资源,尚待更为有效的开发。过去,开发APG资源困难且昂贵,但最近怀俄明州Greater Green River和Wind River盆地的开发成功,以及早些时候阿尔伯达、Denver—Julesburg和San Juan盆地的成功开发均表明,更为有效的开发是做得到的。最重要的是,当异常压力天然气藏的开发取得成功的时候,财政上的回报是显著的。为了更充分地开发盆地中心APG资源,大幅度提高天然气资源转换为能源储量的比率和数量,则需要新的和更富有创新性的开发策略、技术和判断方法。经过多年的努力,天然气新技术开发公司(IDT)的研究团队已经研发出一系列高效勘探和开发异常压力天然气藏的新的有效方法。应用IDT技术可以在钻井之前为开发者提供下列必要的信息:(1)天然气饱和的岩石/流体系统的空间分布,包括压力封存箱边界;(2)区域压力界面或正常和异常压力(或超压,或欠压)的流体之间界线的位置和性质;(3)流体中天然气和水含量的确定;(4)微裂缝群的识别和空间分布;(5)断层的方位和时序;(6)储层属性特征。借助由IDT技术所提供的油气系统的信息,可以使开发者设计并应用最优化钻井方案,从而避免当前与含气异常压力地层开发有关的许多灾难性的陷阱。  相似文献   
110.
Yucca Mountain in southern Nevada is being evaluated as a potential site for the geological disposal of high-level nuclear waste. A reliable assessment of the future performance of the repository will require detailed paleohydrogeological information. Hydrogenic secondary minerals from the vadose zone of Yucca Mountain are being studied as paleohydrogeological indicators. A phenomenological model envisaging the deposition of secondary minerals by meteoric fluids infiltrating downward though the vadose zone was proposed in the reviewed paper. Our evaluation reveals that the model is not supported by empiric evidence reported in the paper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号