In this paper, the data on the paleoclimatic and paleoenvironmental changes during the Holocene are presented and a discussion
is made on a 225-cm-long sediment core from Ulungur Lake, located in Northwest China. The chronology is constructed from six
AMS radiocarbon dates on the bulk organic matter. On the basis of the analysis of ostracod assemblages and the shell stable
isotopes, the core is divided into three paleoclimatic and paleoenvironmental evolution stages: 9 985–5 250 cal.aB.P. stage
is the wettest phase of the core section. The climate changed from moderate-dry to cool-wet, and then to warm-wet in turn,
and the lake level rose accordingly, showing the characteristic of a high lake level. 5 250–1 255 cal.aB.P. stage was the
driest phase of the core sediment. The climate turned from the early warm-dry to the late warm-wet and the lake level fell
and rose again. Finally, the 1 255 cal.aB.P. stage was the medium stage of the section. The temperature was low and then increased
after the 1920s and the climate was dry. The whole climatic and environmental evolution records of Lake Ulungur were not only
in agreement with the sporopollen record of the same core but also in agreement with the record of environmental changes of
adjacent areas. It responded to regional environmental changes and global abrupt climate events, following the westerly climate
change mode on 100-year-scale, primarily with cold-wet and warmdry characteristics.
__________
Translated from Quaternary Sciences, 2007, 27(3):382–391 [译自:第四纪研究] 相似文献
Natural Hazards - In hydrological research, flood events can be analyzed by flood hydrograph coincidence. The duration of the flood hydrograph is a key variable to calculate the flood hydrograph... 相似文献
Time-shift, one of the most popular time-lapse seismic attributes, has been widely used in dynamic reservoir characterization by linking it with pressure and geomechanical changes. Therefore, it is important to select appropriate calculation methods according to different time-lapse seismic data quality and time-shift magnitude. To date, there have been various published works comparing different time-shift calculation methods and discussing their advantages and disadvantages. However, most of these comparisons are based only on synthetic tests or single field applications. As the quality of time-lapse seismic data and time-shift magnitude can vary in different fields, one method may not work consistently well for each case. In this paper, a critical comparison of three different time-shift calculation techniques (Hale’s fast cross-correlation, Rickett’s non-linear inversion, and Whitcombe’s correlated leakage method) is provided. The three methods are applied to a set of synthetic data sets that are designed to account for various seismic noise and time-shift magnitudes. They are also applied to four real time-lapse seismic data sets from three North Sea fields. The calculated time-shift results are compared with the input (in synthetic tests) or the real observations from information such as seabed subsidence and compaction (in field applications). Both qualitative and quantitative comparisons are performed. At the end, each of the time-shift methods is evaluated based on different aspects, and the most appropriate method is suggested for each data scenario. All three time-shift methods are found to successfully measure time-shifts. However, Rickett’s non-linear inversion is the most outstanding method, as it gives smooth time-shifts with relatively good accuracy, and the derived time strains are more stable and interpretable.
The Ransko gabbro-peridotite massif in Eastern Bohemia is a strongly differentiated intrusive complex of Lower Cambrian age. The complex hosts low grade Ni-Cu ores mainly developed close to the contact of olivine-rich rocks with gabbros, in troctolites and, to a much lesser extent, in both pyroxene and olivine gabbros and plagioclase-rich peridotites. The ore zone is characterized by strong serpentinization and uralitization. The total Ni + Cu locally reaches up to 4 wt%. Anomalous concentrations of platinum-group elements (PGE's) (maximum 532 ppb Pd, 182 ppb Pt, 53 ppb Rh, 15 ppb Ru, 41 ppb Ir) were detected in samples of Cu-Ni and Ni-Cu ores (maximum 2.63 wt% Ni and 2.31 wt% Cu) from the Jezírka orebody. The main ore paragenesis includes pyrrhotite, pentlandite, chalcopyrite, cubanite, pyrite, magnetite, mackinawite, valleriite, ilmenite and sphalerite. During this work, michenerite, froodite, sperrylite, gold, native bismuth, altaite, tsumoite, hessite, an unnamed Bi-Ni telluride, cobaltite-gersdorffite and galena were newly identified. The host rocks originated through partial melting of a slightly depleted mantle source with noble metals scavenged from this primitive magma prior to the development of these rocks. 相似文献
With a cratonic nucleus, the North China Craton (NCC) experienced a complex tectonic evolution with multiphase compressional and extensional events during Mesozoic times. Along the northern part of the NCC, the Yinshan–Yanshan fold and thrust belt was a typical intraplate orogen. Jurassic and Cretaceous continental sedimentation, magmatism, widespread intraplate characterize the Yinshan–Yanshan orogenic belt. The geodynamic significance of these tectonic events is still in dispute. In the western part of the Liaoning province, the Yiwulüshan massif crops out at the eastern end of the Yinshan–Yanshan orogenic belt. The Yiwulüshan massif presents an elliptical domal shape with a NE–SW striking long axis. The structural evolution of this massif brings new insights for the understanding of the Mesozoic plutonic–tectonic history of the NCC. A multidisciplinary study involving structural geology, geochronology, Anisotropy of Magnetic Susceptibility (AMS) and gravity modeling have been carried out. The presentation of the new results splits into two parts. Part I (this paper) deals with field and laboratory structural observations, and presents the main geochronological results. The AMS, gravity modeling data will be provided in a companion paper (Part II). The early compressional deformation (D1) corresponds to a Late Jurassic to Early Cretaceous southward thrusting. The subsequent deformation is related to the Early Cretaceous exhumation of the Yiwulüshan massif. A detailed structural analysis allows us to distinguish several deformation events (D2, D3, and D4). The Cretaceous extensional structures, such as syntectonic plutons bounded by ductile normal faults, metamorphic core complexes, and half-graben basins are recognized in many places in East Asia. These new data from the Yiwulüshan massif constitute a link between Transbaikalia, Mongolia, North China and South China, indicating that NW–SE extensional Mesozoic tectonics occurred throughout the entire region. 相似文献