首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4120篇
  免费   878篇
  国内免费   1156篇
测绘学   468篇
大气科学   792篇
地球物理   883篇
地质学   2250篇
海洋学   588篇
天文学   155篇
综合类   387篇
自然地理   631篇
  2024年   42篇
  2023年   104篇
  2022年   267篇
  2021年   327篇
  2020年   261篇
  2019年   343篇
  2018年   292篇
  2017年   265篇
  2016年   269篇
  2015年   255篇
  2014年   283篇
  2013年   296篇
  2012年   274篇
  2011年   271篇
  2010年   231篇
  2009年   230篇
  2008年   241篇
  2007年   243篇
  2006年   223篇
  2005年   172篇
  2004年   151篇
  2003年   133篇
  2002年   150篇
  2001年   132篇
  2000年   112篇
  1999年   137篇
  1998年   62篇
  1997年   71篇
  1996年   66篇
  1995年   38篇
  1994年   57篇
  1993年   36篇
  1992年   22篇
  1991年   11篇
  1990年   19篇
  1989年   15篇
  1988年   11篇
  1987年   12篇
  1986年   4篇
  1985年   3篇
  1984年   6篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   6篇
  1975年   1篇
  1954年   1篇
排序方式: 共有6154条查询结果,搜索用时 78 毫秒
91.
水位下降卸荷诱发库岸边坡快速失稳机理分析   总被引:6,自引:0,他引:6  
本文以某工程现场岩质边坡为例,采用与传统裂隙水压力分布不同的水压力分布方式和边坡裂隙中可能发生的水锤效应相耦合,分析研究了岩质边坡发生滑动的机理及稳定性。研究表明,本文所采用的水压力分布方式较为符合边坡中的水压力分布实际情况,可以给出一个较为合理的稳定系数。当考虑水锤效应时,岩质边坡的稳定系数大大降低,说明水锤效应加剧了边坡破坏失稳的过程。本文所采用的水压力分布方式与边坡裂隙中的水锤效应相耦合的计算方法,在边坡稳定性分析中具有参考意义。  相似文献   
92.
本文较为详细地介绍了影响我国气候的重要因子——西风带的一些国内外最新研究动态,这些研究动态和研究成果将对山西省的气候研究起到积极作用。  相似文献   
93.
“山西省卫星农网”依托其省、市、县三级专门服务于农业的信息交流平台,能够及时地让农户了解国家和地方的农业政策及办事程序等,成为农户和政府间的信息桥梁,为广大农村提供准确的各类气象信息,有效地指导了农业生产,大大地减小了天气灾害损失。山西卫星农网作为山西省规模较大的农业专业网站,其影响和作用正逐步地发挥出来。  相似文献   
94.
山西临汾盆地近期地震活动性分析   总被引:1,自引:0,他引:1  
张红秀  张梅 《山西地震》2005,(1):4-5,17
通过对临汾盆地内近期地震活动频度和地震活动图像的分析,认为未来中强地震最有可能发生在近期地震活动较稀少的地段,能量积累的优势层位为5km~15km。  相似文献   
95.
Feldspar and clastic debris are the most important constituent framework grains of sedimentary clastic rocks and their chemical dissolution plays an essential role in the formation and evolution of the secondary pore in the reservoir rocks. On the basis of thermodynamic phase equilibrium, this study investigates the chemical equilibrium relationships between fluid and various plagioclase and K-feldspar in diagenesis of the sediments, particularly, the impact of temperature and fluid compositions (pH, activity of K+, Na+, Ca2+ and so on) on precipitation and dissolution equilibria of feldspars. Feldspar is extremely easily dissolved in the acid pore water with a low salinity when temperature decreases. The dissolution of anorthite end-member of plagioclase is related to the Ca content of the mineral and the fluid, higher Ca either in the mineral or in the fluid, easier dissolution of the feldspar. Moreover, the dissolution of albite end-member of plagioclase is related to Na of both the mineral and fluid,  相似文献   
96.
This paper describes the influence of siliceous and iron-rich calcic low-temperature hydrothermal fluids (LTHF) on the mineralogy and geochemistry of the Late Permian No. 11 Coal (anthracitic, Rr=2.85%) in the Dafang Coalfield in northwestern Guizhou Province, China. The No. 11 Coal has high contents of vein ankerite (10.2 vol.%) and vein quartz (11.4 vol.%), with formation temperatures of 85 and 180 °C, respectively, indicating that vein ankerite and vein quartz were derived from low-temperature calcic and siliceous hydrothermal fluids in two epigenetic episodes. The vein quartz appears to have formed earlier than vein ankerite did, and at least three distinct stages of ankerite formation with different Ca/Sr and Fe/Mn ratios were observed.The two types of mineral veins are sources of different suites of major and trace metals. Scanning electron microscope and sequential extraction studies show that, in addition to Fe, Mg, and Ca, vein ankerite is the dominant source of Mn, Cu, Ni, Pb, and Zn in the coal, and the contents of these five elements are as high as 0.09% and 74.0, 33.6, 185, and 289 μg/g, respectively. In contrast, vein quartz is the main carrier mineral for platinum-group elements (PGEs) Pd, Pt, and Ir in the coal, and the contents of Pd, Pt, and Ir are 1.57, 0.15, and 0.007 μg/g, respectively. Sequential extraction showed a high PGE content in the silicate fraction, up to 10.4 μg/g Pd, 1.23 μg/g Pt, and 0.05 μg/g Ir, respectively. It is concluded that the formation of ankerite and quartz and the anomalous enrichment of trace elements in the No. 11 Coal in the Dafang Coalfield, Guizhou, result from the influx of calcic and siliceous low-temperature hydrothermal fluids.  相似文献   
97.
Coupled thermo‐hydro‐mechanical‐chemical modelling has attracted attention in past decades due to many contemporary geotechnical engineering applications (e.g., waste disposal, carbon capture and storage). However, molecular‐scale interactions within geomaterials (e.g., swelling and dissolution/precipitation) have a significant influence on the mechanical behaviour, yet are rarely incorporated into existing Thermal‐Hydro‐Mechanical‐Chemical (THMC) frameworks. This paper presents a new coupled hydro‐mechanical‐chemical constitutive model to bridge molecular‐scale interactions with macro‐physical deformation by combining the swelling and dissolution/precipitation through an extension of the new mixture‐coupling theory. Entropy analysis of the geomaterial system provides dissipation energy, and Helmholtz free energy gives the relationship between solids and fluids. Numerical simulation is used to compare with the selected recognized models, which demonstrates that the swelling and dissolution/precipitation processes may have a significant influence on the mechanical deformation of the geomaterials.  相似文献   
98.
Biochar has the potential to be a soil amendment in green roofs owing to its water retention, nutrient supply, and carbon sequestration application. The combined effects of biochar and vegetated soil on hydraulic performance (e.g., saturated hydraulic conductivity, retention and detention, and runoff delay) are the crucial factor for the application of the novel biochar in green roofs. Recent studies investigated soil water potential (i.e., suction) either on vegetated soil or on biochar-amended soil but rarely focused on their integrated application. With the purpose of investigating the hydraulic performance of green roofs in the application of biochar, the combined effect of biochar and vegetated soil on hydrological processes was explored. Artificial rainfall experiments were conducted on the four types of experimental soil columns, including natural soil, biochar-amended soil, vegetated natural soil, and vegetated biochar-amended soil. The surface ponding, bottom drainage and the volumetric water content were measured during the rainfall test. Simulation method by using HYDRUS-1D was adopted for estimating hydraulic parameters and developing modelling analysis. The results indicated that the saturated hydraulic conductivity of vegetated soil columns were higher than bare soil columns. The addition of biochar decreased the saturated hydraulic conductivity, and the magnitude of decrease was much significant in the case of vegetated soil. The influence of vegetation on permeability is more prominent than biochar. The vegetated biochar-amended soil has the highest retention and detention capacity, and shows a preferable runoff delay effect under heavy rain among the four soil columns. The results from the present study help to understand the hydrological processes in the green roof in the application of biochar, and imply that biochar can be an alternative soil amendment to improve the hydraulic performance.  相似文献   
99.
Exploring the chemical characterization of dissolved organic matter (DOM) is important for understanding the fate of laterally transported organic matter in watersheds. We hypothesized that differences in water-extractable organic matter (WEOM) in soils of varying land uses and rainfall events may significantly affect the quality and the quantity of stream DOM. To test our hypotheses, characteristics of rainfall-runoff DOM and WEOM of source materials (topsoil from different land uses and gullies, as well as typical vegetation) were investigated at two adjacent catchments in the Loess Plateau of China, using ultraviolet–visible absorbance and excitation emission matrix fluorescence with parallel factor analysis (PARAFAC). Results indicated that land-use types may significantly affect the chemical composition of soil WEOM, including its aromaticity, molecular weight, and degree of humification. The PARAFAC analysis demonstrated that the soils and stream water were dominated by terrestrial/allochthonous humic-like substances and microbial transformable humic-like fluorophores. Shifts in the fluorescence properties of stream DOM suggested a pronounced change in the relative proportion of allochthonous versus autochthonous material under different rainfall patterns and land uses. For example, high proportions of forestland could provide more allochthonous DOM input. This study highlights the relevance of soils and hydrological dynamics on the composition and fluxes of DOM issuing from watersheds. The composition of DOM in soils was influenced by land-use type. Precipitation patterns influenced the proportion of terrestrial versus microbial origins of DOM in surface runoff. Contributions of allochthonous, terrestrially derived DOM inputs were highest from forested landscapes.  相似文献   
100.
In engineering practice, a rapid loading rate can result in ground failure when the strength of soft soils is relatively low, and a multistage loading scheme is always utilized to deal with this situation. Firstly, under a multistage load and the continuous drainage boundary, an analytical solution of excess pore-water pressure and consolidation degree is obtained by virtue of the superposition formula of excess pore-water pressure, and a more general continuous drainage boundary under arbitrary time-dependent load is developed. Then, a comparison with existing analytical solutions is conducted to verify the present solution. A preliminary attempt on applying the continuous drainage boundary into the finite element model is made, and the feasibility of the numerical model for the one-dimensional consolidation under the continuous drainage boundary is verified by comparing the results calculated by FEM with that from present analytical solution. Finally, the consolidation behavior of soil is investigated in detail for different int erface parameters or loading scheme. The results show that, in land reclamation projects, a horizontal drain should be placed close to the boundary with a smaller interface parameter to improve the consolidation efficiency. The degree of consolidation is also related to the applied time-dependent load and interface parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号