首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16608篇
  免费   1922篇
  国内免费   2917篇
测绘学   887篇
大气科学   2442篇
地球物理   3326篇
地质学   8103篇
海洋学   2271篇
天文学   1862篇
综合类   997篇
自然地理   1559篇
  2024年   77篇
  2023年   221篇
  2022年   680篇
  2021年   894篇
  2020年   807篇
  2019年   861篇
  2018年   1078篇
  2017年   1000篇
  2016年   991篇
  2015年   749篇
  2014年   950篇
  2013年   1031篇
  2012年   998篇
  2011年   1093篇
  2010年   986篇
  2009年   933篇
  2008年   886篇
  2007年   919篇
  2006年   824篇
  2005年   434篇
  2004年   372篇
  2003年   426篇
  2002年   490篇
  2001年   453篇
  2000年   340篇
  1999年   364篇
  1998年   283篇
  1997年   307篇
  1996年   255篇
  1995年   255篇
  1994年   229篇
  1993年   180篇
  1992年   163篇
  1991年   107篇
  1990年   92篇
  1989年   109篇
  1988年   79篇
  1987年   63篇
  1986年   57篇
  1985年   43篇
  1984年   42篇
  1983年   41篇
  1982年   40篇
  1981年   24篇
  1980年   23篇
  1979年   28篇
  1978年   17篇
  1977年   17篇
  1975年   22篇
  1973年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
471.
As a result of global warming induced permafrost degradation in recent decades, thermokarst lakes in the Qinghai–Tibet plateau (QTP) have been regulating local hydrological and ecological processes. Simulations with coupled moisture–heat numerical models in the Beiluhe basin (located in the hinterland of permafrost regions on the QTP) have provided insights into the interaction between groundwater flow and the freeze–thaw process. A total of 30 modified SUTRA scenarios were established to examine the effects of hydrodynamic forces, permeability, and climate on thermokarst lakes. The results indicate that the hydrodynamic condition variables regulate the permafrost degradation around the lakes. In case groundwater recharges to the lake, a low–temperature groundwater flow stimulates the expansion of the surrounding thawing regions through thermal convection. The thawing rate of the permafrost underlying the lake intensifies when groundwater is discharged from the lake. Under different permeability conditions, spatiotemporal variations in the active layer thickness significantly influence the occurrence of an open talik at the lake bottom. A warmer and wetter climate will inevitably lead to a sharp decrease in the upper limit of the surrounding permafrost, with a continual decrease in the duration of open talik events. Overall, our results underscore that comprehensive consideration of the relevant hydrologic processes is critical for improving the understanding of environmental and ecological changes in cold environments.  相似文献   
472.
Climate factors play critical roles in controlling chemical weathering, while chemically weathered surface material can regulate climate change. To estimate global chemical weathering fluxes and CO2 balance, it is important to identify the characteristics and driving factors of chemical weathering and CO2 consumption on the Tibetan Plateau, especially in glaciated catchments. The analysis of the hydro-geochemical data indicated that silicate weathering in this area was inhibited by low temperatures, while carbonate weathering was promoted by the abundant clastic rocks with fresh surfaces produced by glacial action. Carbonate weathering dominated the riverine solute generation (with a contribution of 58%, 51%, and 43% at the QiangYong Glacier (QYG), the WengGuo Hydrological Station (WGHS), and the lake estuary (LE), respectively). The oxidation of pyrite contributed to 35%, 42%, and 30% of the riverine solutes, while silicate weathering contributed to 5%, 6%, and 26% of the riverine solutes at the QYG, WGHS, and LE, respectively. The alluvial deposit of easily weathering fine silicate minerals, the higher air temperature, plant density, and soil thickness at the downstream LE in comparison to upstream and midstream may lead to longer contact time between pore water and mineral materials, thus enhancing the silicate weathering. Because of the involvement of sulfuric acid produced by the oxidation of pyrite, carbonate weathering in the upstream and midstream did not consume atmospheric CO2, resulting in the high rate of carbonate weathering (73.9 and 75.6 t km−2 yr−1, respectively, in maximum) and potential net release of CO2 (with an upper constraint of 35.6 and 35.2 t km−2 yr−1, respectively) at the QYG and WGHS. The above results indicate the potential of the glaciated area of the Tibetan Plateau with pyrite deposits being a substantial natural carbon source, which deserves further investigation.  相似文献   
473.
474.
475.
We present a drought reconstruction for southeastern China based on a tree‐ring width chronology of Cryptomeria fortunei developed from two sampling sites in central Fujian. A reconstruction of July–February drought variability, spanning AD 1855–2011, was developed by calibrating total tree‐ring width data with the self‐calibrating Palmer drought severity index (scPDSI). The reconstruction was verified against an independent data set, and accounts for 36% of the actual scPDSI variance during the period 1955–2011. Relatively dry intervals were reconstructed between AD 1859–1880, 1899–1911, 1927–1933, 1946–1959, 1964–1970 and 1987–1997. Relatively wet conditions prevailed during 1855–1858, 1881–1898, 1912–1926, 1934–1945, 1960–1963, 1971–1986 and 1998–2011. Comparisons between our scPDSI reconstruction and a moisture‐sensitive tree‐ring width record from Vietnam revealed consistencies between the two data sets, suggesting similar drought regimes. Spectral peaks of 2.2–6.4 years may be indicative of El Niño‐Southern Oscillation (ENSO) activity, as also suggested by the significant correlations with sea surface temperatures (SSTs) in the eastern equatorial and southeastern Pacific Ocean and an extreme event analysis. The analysis of links between our scPDSI reconstruction and the large‐scale regional climatic variation shows that there is a relationship between regional drought variation and East Asian summer monsoon (EASM) intensity.  相似文献   
476.
Coupled thermo‐hydro‐mechanical‐chemical modelling has attracted attention in past decades due to many contemporary geotechnical engineering applications (e.g., waste disposal, carbon capture and storage). However, molecular‐scale interactions within geomaterials (e.g., swelling and dissolution/precipitation) have a significant influence on the mechanical behaviour, yet are rarely incorporated into existing Thermal‐Hydro‐Mechanical‐Chemical (THMC) frameworks. This paper presents a new coupled hydro‐mechanical‐chemical constitutive model to bridge molecular‐scale interactions with macro‐physical deformation by combining the swelling and dissolution/precipitation through an extension of the new mixture‐coupling theory. Entropy analysis of the geomaterial system provides dissipation energy, and Helmholtz free energy gives the relationship between solids and fluids. Numerical simulation is used to compare with the selected recognized models, which demonstrates that the swelling and dissolution/precipitation processes may have a significant influence on the mechanical deformation of the geomaterials.  相似文献   
477.
Quantifying the impact of landscape on hydrological variables is essential for the sustainable development of water resources. Understanding how landscape changes influence hydrological variables will greatly enhance the understanding of hydrological processes. Important vegetation parameters are considered in this study by using remote sensing data and VIC-CAS model to analyse the impact of landscape changes on hydrology in upper reaches of the Shule River Basin (URSLB). The results show there are differences in the runoff generation of landscape both in space and time. With increasing altitude, the runoff yields increased, with approximately 79.9% of the total runoff generated in the high mountains (4200–5900 m), and mainly consumed in the mid-low mountain region. Glacier landscape produced the largest runoff yields (24.9% of the total runoff), followed by low-coverage grassland (LG; 22.5%), alpine cold desert (AL; 19.6%), mid-coverage grassland (MG; 15.6%), bare land (12.5%), high-coverage grassland (HG; 4.5%) and shrubbery (0.4%). The relative capacity of runoff generation by landscapes, from high to low, was the glaciers, AL, LG, HG, MG, shrubbery and bare land. Furthermore, changes in landscapes cause hydrological variables changes, including evapotranspiration, runoff and baseflow. The study revealed that HG, MG, and bare land have a positive impact on evapotranspiration and a negative impact on runoff and baseflow, whereas AL and LG have a positive impact on runoff and baseflow and a negative impact on evapotranspiration. In contrast, glaciers have a positive impact on runoff. After the simulation in four vegetation scenarios, we concluded that the runoff regulation ability of grassland is greater than that of bare land. The grassland landscape is essential since it reduced the flood peak and conserved the soil and water.  相似文献   
478.
A cavity expansion–based solution is proposed in this paper for the interpretation of CPTu data under a partially drained condition. Variations of the normalized cone tip resistance, cone factor, and undrained-drained resistance ratio are examined with different initial specific volume and overconsolidation ratio, based on the exact solutions of both undrained and drained cavity expansion in CASM, which is a unified state parameter model for clay and sand. A drainage index is proposed to represent the partially drained condition, and the critical state after expansion and stress paths of cavity expansion are therefore predicted by estimating a virtual plastic region and assuming a drainage-index–based mapping technique. The stress paths and distributions of stresses and specific volume are investigated for different values of drainage index, which are also related to the penetration velocity with comparisons of experimental data and numerical results. The subsequent consolidation after penetration is thus predicted with the assumption of constant deviatoric stress during dissipation of the excess pore pressure. Both spherical and cylindrical consolidations are compared for dissipation around the cone tip and the probe shaft, respectively. The effects of overconsolidation ratio on the stress paths and the distributions of excess pore pressure and specific volume are then thoroughly investigated. The proposed solution and the findings would contribute to the interpretation of CPTu tests under a random drained condition, as well as the analysis of pile installation and the subsequent consolidation.  相似文献   
479.
Previous work on three‐dimensional shakedown analysis of cohesive‐frictional materials under moving surface loads has been entirely for isotropic materials. As a result, the effects of anisotropy, both elastic and plastic, of soil and pavement materials are ignored. This paper will, for the first time, develop three‐dimensional shakedown solutions to allow for the variation of elastic and plastic material properties with direction. Melan's lower‐bound shakedown theorem is used to derive shakedown solutions. In particular, a generalised, anisotropic Mohr–Coulomb yield criterion and cross‐anisotropic elastic stress fields are utilised to develop anisotropic shakedown solutions. It is found that shakedown solutions for anisotropic materials are dominated by Young's modulus ratio for the cases of subsurface failure and by shear modulus ratio for the cases of surface failure. Plastic anisotropy is mainly controlled by material cohesion ratio, the rise of which increases the shakedown limit until a maximum value is reached. The anisotropic shakedown limit varies with frictional coefficient, and the peak value may not occur for the case of normal loading only. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
480.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号