首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2605篇
  免费   45篇
  国内免费   27篇
测绘学   253篇
大气科学   165篇
地球物理   527篇
地质学   916篇
海洋学   59篇
天文学   631篇
综合类   23篇
自然地理   103篇
  2022年   23篇
  2021年   29篇
  2020年   35篇
  2019年   29篇
  2018年   143篇
  2017年   111篇
  2016年   154篇
  2015年   76篇
  2014年   131篇
  2013年   152篇
  2012年   106篇
  2011年   116篇
  2010年   99篇
  2009年   114篇
  2008年   89篇
  2007年   62篇
  2006年   59篇
  2005年   57篇
  2004年   32篇
  2003年   41篇
  2002年   54篇
  2001年   36篇
  2000年   39篇
  1999年   46篇
  1998年   38篇
  1997年   37篇
  1996年   28篇
  1995年   27篇
  1994年   34篇
  1993年   29篇
  1992年   31篇
  1991年   40篇
  1990年   28篇
  1989年   41篇
  1988年   48篇
  1987年   52篇
  1986年   36篇
  1985年   35篇
  1984年   61篇
  1983年   58篇
  1982年   34篇
  1981年   21篇
  1980年   27篇
  1979年   16篇
  1978年   19篇
  1976年   12篇
  1974年   11篇
  1973年   12篇
  1972年   14篇
  1971年   10篇
排序方式: 共有2677条查询结果,搜索用时 31 毫秒
71.
Dehydration melting of tonalites. Part II. Composition of melts and solids   总被引:6,自引:0,他引:6  
 Dehydration melting of tonalitic compositions (phlogopite or biotite-plagioclase-quartz assemblages) is investigated within a temperature range of 700–1000°C and pressure range of 2–15 kbar. The solid reaction products in the case of the phlogopite-plagioclase(An45)-quartz starting material are enstatite, clinopyroxene and potassium feldspar, with amphiboles occurring occasionally. At 12 kbar, zoisite is observed below 800°C, and garnet at 900°C. The reaction products of dehydration melting of the biotite (Ann50)-plagioclase (An45)-quartz assemblage are melt, orthopyroxene, clinopyroxene, amphibole and potassium feldspar. At pressures > 8 kbar and temperatures below 800°C, epidote is also formed. Almandine-rich garnet appears above 10 kbar at temperatures ≥ 750°C. The composition of melts is granitic to granodioritic, hence showing the importance of dehydration melting of tonalites for the formation of granitic melts and granulitic restites at pressure-temperature conditions within the continental crust. The melt compositions plot close to the cotectic line dividing the liquidus surfaces between quartz and potassium feldspar in the haplogranite system at 5 kbar and a H 2O = 1. The composition of the melts changes with the composition of the starting material, temperature and pressure. With increasing temperature, the melt becomes enriched in Al2O3 and FeO+MgO. Potash in the melt is highest just when biotite disappears. The amount of CaO decreases up to 900°C at 5 kbar whereas at higher temperatures it increases as amphibole, clinopyroxene and more An-component dissolve in the melt. The Na2O content of the melt increases slightly with increase in temperature. The composition of the melt at temperatures > 900°C approaches that of the starting assemblage. The melt fraction varies with composition and proportion of hydrous phases in the starting composition as well as temperature and pressure. With increasing modal biotite from 20 to 30 wt%, the melt proportion increases from 19.8 to 22.3 vol.% (850°C and 5 kbar). With increasing temperature from 800 to 950°C (at 5 kbar), the increase in melt fraction is from 11 to 25.8 vol.%. The effect of pressure on the melt fraction is observed to be relatively small and the melt proportion in the same assemblage decreases at 850°C from 19.8 vol.% at 5 kbar to 15.3 vol.% at 15 kbar. Selected experiments were reversed at 2 and 5 kbar to demonstrate that near equilibrium compositions were obtained in runs of longer duration. Received: 27 December 1995 / Accepted: 7 May 1996  相似文献   
72.
Landslides are studied systematically in order to evaluate the nature of hazard and the damages to the human life, land, roads, buildings and other properties. This can be expressed in terms of risk, which is a function of hazard probability and damage potential. A risk map will indicate the priorities for landslide hazard management. A new approach to risk assessment mapping using a risk assessment matrix (RAM) is presented.  相似文献   
73.
Effect of tunnel depth on modulus of deformation of rock mass   总被引:1,自引:2,他引:1  
Summary Deformability of rock mass significantly influences its behaviour and is, therefore, an important consideration for the design of underground openings. The modulus of deformation of rock mass is, however, normally obtained from expensive and time-consuming uniaxial jacking tests, whose results often have a large scatter. An empirical correlation has, therefore, been proposed for a quick and inexpensive preliminary estimation of the modulus of deformation of rock mass on the basis of field instrumentation carried out in tunnels in India.  相似文献   
74.
The value of Shannon entropy for a given set of data depends on the class interval chosen to compute the relative frequency of each class. For three data sets, expressed in dimensional as well as nondimensional form, the entropy value was computed for different class-interval sizes. Entropy was found to decrease with increasing class interval as well as with increasing sampling interval. It is suggested that these intervals should be selected with care.  相似文献   
75.
The Kundal area of Malani Igneous Suite consists of volcano-plutonic rocks. Basalt flows and gabbro intrusives are associated with rhyolite. Both the basic rocks consist of similar mineralogy of plagioclase, clinopyroxene as essential and Fe-Ti oxides as accessories. Basalt displays sub-ophitic and glomeroporphyritic textures whereas gabbro exhibits sub-ophitic, porphyritic and intergrannular textures. They show comparable chemistry and are enriched in Fe, Ti and incompatible elements as compared to MORB/CFB. Samples are enriched in LREE and slightly depleted HREE patterns with least significant positive Eu anomalies. Petrographical study and petrogenetic modeling of [Mg]-[Fe], trace and REE suggest cogenetic origin of these basic rocks and they probably derived from Fe-enriched source with higher Fe/Mg ratio than primitive mantle source. Thus, it is concluded that the basic volcano-plutonic rocks of Kundal area are the result of a low to moderate degree (< 30%) partial melting of source similar to picrite/komatiitic composition. Within plate, anorogenic setting for the basic rocks of Kundal area is suggested, which is in conformity with the similar setting for Malani Igneous Suite.  相似文献   
76.
The impact of warmer climate on melt and evaporation was studied for rainfed, snowfed and glacierfed basins located in the western Himalayan region. Hydrological processes were simulated under current climatic conditions using a conceptual hydrological model, which accounts for the rainfall–runoff, evaporation losses, snow and glacier melt. After simulations of daily observed streamflow (R2=0.90) for 6 years, the model was used to study the impact of warmer climate on melt and evaporation. Based on the future projected climatic scenarios in the study region, three temperature scenarios (T+1, T+2 and T+3 °C) were adopted for quantifying the effect of warmer climate. The comparison of the effect of warmer climate on different types of basins indicated that the increase in evaporation was the maximum for snowfed basins. For a T+2 °C scenario, the annual evaporation for the rainfed basins increased by about 12%, whereas for the snowfed basins it increased by about 24%. The high increase of the evaporation losses would reduce the runoff. It was found that under a warmer climate, melt was reduced from snowfed basins, but increased from glacierfed basins. For a T+2 °C scenario, annual melt was reduced by about 18% for the studied snowfed basin, while it increased by about 33% for the glacierfed basin. Thus, impact of warmer climate on the melt from the snowfed and glacierfed basins was opposite to each other. The study suggests that out of three types of basins, snowfed basins are more sensitive in terms of reduction in water availability due to a compound effect of increase in evaporation and decrease in melt. For a complex type of basin, the decrease in melt from seasonal snow may be counterbalanced by increase in melt from glaciers. However, on long-term basis, when the areal extent of glaciers will decrease due to higher melt rate, the water availability from the complex basins will be reduced.  相似文献   
77.
Seismic waveforms contain valuable information about the media, but the waveform inversion is a non‐linear problem. We present a waveform inversion method that combines a local optimization method with a genetic algorithm to determine the anisotropic parameters of a horizontally stratified medium. Synthetic seismograms for a horizontally stratified anisotropic medium are calculated using the reflectivity technique. In the initial stage of the inversion, the global space‐sampling properties of the genetic algorithm are used to direct the search to the region close to the global solution. This solution is then further improved using a conjugate‐gradient method. The numerical experiments performed with noisy synthetic data show that our hybrid optimization method satisfactorily reconstructs the anisotropic parameters at a reasonable computing cost while the range of slowness is adequate. We found that (i) for small‐angle data neither single‐ nor multiple‐component data are sufficient to determine the anisotropic parameters uniquely; (ii) for medium‐angle data the multiple‐component data are sufficient to determine the anisotropic parameters exactly whereas the single‐component data are not sufficient; and (iii) for wide‐angle data, either single‐ or multiple‐component data are sufficient to determine the anisotropic parameters accurately.  相似文献   
78.
Analysis of earth dams affected by the 2001 Bhuj Earthquake   总被引:3,自引:0,他引:3  
An earthquake of magnitude of 7.6 (Mw 7.6) occurred in Bhuj, India on January 26, 2001. This event inflicted damages of varying extents to a large number of small to moderate size multi-zone earth dams in the vicinity of the epicenter. Some of the distress was due to the liquefaction of saturated alluvium in foundation. Liquefaction was relatively localized for the majority of these dams because the earthquake struck in the middle of a prolonged dry season when the reservoirs behind these dams were nearly empty and shallow alluvium soils underneath the downstream portions of the dams were partly dry. Otherwise, liquefaction of foundation soils would have been more extensive and damage to these dams more significant. Six such dams have been examined in this paper. Four of these facilities, Chang, Shivlakha, Suvi, and Tapar were within the 50 km of epicenter region. These dams underwent free-field ground motion with peak ground accelerations between 0.28g to 0.52g. Of these Chang Dam underwent severe slumping, whereas Shivlakha, Suvi, and Tapar Dams were affected severely especially over the upstream sections. Fatehgadh Dam and Kaswati Dam were affected relatively less severely. Foundation conditions underneath these dams were first examined for assessing liquefaction potential. A limited amount of subsurface information available from investigations undertaken prior to the earthquake indicates that, although the foundation soils within the top 2.0 to 2.5 m underneath these dams were susceptible to liquefaction, Bhuj Earthquake did not trigger liquefaction because of lack of saturation of these layers underneath the downstream portions of these dams. These dams were then analyzed using a simple sliding block procedure using appropriate estimates of undrained soil strength parameters. The results of this analysis for these structures were found to be in general agreement with the observed deformation patterns.  相似文献   
79.
Prediction of creep characteristic of rock under varying environment   总被引:2,自引:0,他引:2  
The strain developed due to creep is mainly proportional to the logarithm of the time under load, and is mostly proportional to the stress and temperature. At higher temperature the creep rate falls slowly with respect to time, and the creep strain is proportional to a fractional power of time, with the exponent increasing as the temperature increases and reaching a value approximately one-third at temperatures of about 0.5°C. At these temperatures, the creep increases with stress according to a power greater than unity and possibly exponentially. It increases with temperature as (−U/kT), where U is an activation energy and k is Boltzman’s constant. There are different methods to determine the creep strain and the energy of Jog (B) including experimental methods, multivariate regression analysis, and by numerical simulation. These methods are less cumbersome and time consuming. In the present investigation, artificial neural network technique has been used for prediction of the creep strain and energy of Jog (B). Two different networks have been tested and validated. Both the networks have four input neurons and one hidden layer with five neurons, and one output neuron. The data for different rocks at temperatures up to 750°C under conditions of compressive or tortional stress are taken from the literatures. The training and testing data sets used were 163 and 14, respectively. To deal with the problem of overfitting of data, Bayesian regulation has been used and network is trained with suitable training epochs. The coefficients of correlation among the predicted and observed values are found high and they improve the confidence of the users. The mean absolute percentage error obtained are also very low.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号