首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26713篇
  免费   650篇
  国内免费   1500篇
测绘学   1579篇
大气科学   2412篇
地球物理   5137篇
地质学   12851篇
海洋学   1322篇
天文学   1714篇
综合类   2370篇
自然地理   1478篇
  2024年   21篇
  2023年   68篇
  2022年   138篇
  2021年   168篇
  2020年   108篇
  2019年   120篇
  2018年   4882篇
  2017年   4135篇
  2016年   2698篇
  2015年   370篇
  2014年   214篇
  2013年   179篇
  2012年   1118篇
  2011年   2862篇
  2010年   2151篇
  2009年   2420篇
  2008年   1978篇
  2007年   2466篇
  2006年   125篇
  2005年   277篇
  2004年   453篇
  2003年   466篇
  2002年   307篇
  2001年   111篇
  2000年   140篇
  1999年   137篇
  1998年   94篇
  1997年   111篇
  1996年   87篇
  1995年   56篇
  1994年   59篇
  1993年   78篇
  1992年   50篇
  1991年   43篇
  1990年   24篇
  1989年   16篇
  1988年   15篇
  1987年   15篇
  1986年   13篇
  1985年   9篇
  1984年   8篇
  1983年   4篇
  1982年   3篇
  1981年   28篇
  1980年   22篇
  1979年   2篇
  1976年   6篇
  1973年   2篇
  1959年   1篇
  1958年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
31.
In an elementary approach every geometrical height difference between the staff points of a levelling line should have a corresponding average g value for the determination of potential difference in the Earth’s gravity field. In practice this condition requires as many gravity data as the number of staff points if linear variation of g is assumed between them. Because of the expensive fieldwork, the necessary data should be supplied from different sources. This study proposes an alternative solution, which is proved at a test bed located in the Mecsek Mountains, Southwest Hungary, where a detailed gravity survey, as dense as the staff point density (~1 point/34 m), is available along a 4.3-km-long levelling line. In the first part of the paper the effect of point density of gravity data on the accuracy of potential difference is investigated. The average g value is simply derived from two neighbouring g measurements along the levelling line, which are incrementally decimated in the consecutive turns of processing. The results show that the error of the potential difference between the endpoints of the line exceeds 0.1 mm in terms of length unit if the sampling distance is greater than 2 km. Thereafter, a suitable method for the densification of the decimated g measurements is provided. It is based on forward gravity modelling utilising a high-resolution digital terrain model, the normal gravity and the complete Bouguer anomalies. The test shows that the error is only in the order of 10−3mm even if the sampling distance of g measurements is 4 km. As a component of the error sources of levelling, the ambiguity of the levelled height difference which is the Euclidean distance between the inclined equipotential surfaces is also investigated. Although its effect accumulated along the test line is almost zero, it reaches 0.15 mm in a 1-km-long intermediate section of the line.  相似文献   
32.
Most satellites in a low-Earth orbit (LEO) with demanding requirements on precise orbit determination (POD) are equipped with on-board receivers to collect the observations from Global Navigation Satellite systems (GNSS), such as the Global Positioning System (GPS). Limiting factors for LEO POD are nowadays mainly encountered with the modeling of the carrier phase observations, where a precise knowledge of the phase center location of the GNSS antennas is a prerequisite for high-precision orbit analyses. Since 5 November 2006 (GPS week 1400), absolute instead of relative values for the phase center location of GNSS receiver and transmitter antennas are adopted in the processing standards of the International GNSS Service (IGS). The absolute phase center modeling is based on robot calibrations for a number of terrestrial receiver antennas, whereas compatible antenna models were subsequently derived for the remaining terrestrial receiver antennas by conversion (from relative corrections), and for the GNSS transmitter antennas by estimation. However, consistent receiver antenna models for space missions such as GRACE and TerraSAR-X, which are equipped with non-geodetic receiver antennas, are only available since a short time from robot calibrations. We use GPS data of the aforementioned LEOs of the year 2007 together with the absolute antenna modeling to assess the presently achieved accuracy from state-of-the-art reduced-dynamic LEO POD strategies for absolute and relative navigation. Near-field multipath and cross-talk with active GPS occultation antennas turn out to be important and significant sources for systematic carrier phase measurement errors that are encountered in the actual spacecraft environments. We assess different methodologies for the in-flight determination of empirical phase pattern corrections for LEO receiver antennas and discuss their impact on POD. By means of independent K-band measurements, we show that zero-difference GRACE orbits can be significantly improved from about 10 to 6 mm K-band standard deviation when taking empirical phase corrections into account, and assess the impact of the corrections on precise baseline estimates and further applications such as gravity field recovery from kinematic LEO positions.  相似文献   
33.
The topographic bias is defined as the error/bias committed by continuing the external gravity field inside the topographic masses by a harmonic function. We study the topographic bias given by a digital terrain model defined by a spherical template, and we show that the topographic bias is given only by the potential of an inner-zone cap, and it equals the bias of the Bouguer shell, independent of the size of the cap. Then we study the effect on the real Earth by decomposing its topography into a template, and we show also in this case that the topographic bias is that of the Bouguer shell, independent of the shape of the terrain. Finally, we show that the topographic potential of the terrain at the geoid can be determined to any precision by a Taylor expansion outside the Earth’s surface. The last statement is demonstrated by a Taylor expansion to fourth order.  相似文献   
34.
Many regions around the world require improved gravimetric data bases to support very accurate geoid modeling for the modernization of height systems using GPS. We present a simple yet effective method to assess gravity data requirements, particularly the necessary resolution, for a desired precision in geoid computation. The approach is based on simulating high-resolution gravimetry using a topography-correlated model that is adjusted to be consistent with an existing network of gravity data. Analysis of these adjusted, simulated data through Stokes’s integral indicates where existing gravity data must be supplemented by new surveys in order to achieve an acceptable level of omission error in the geoid undulation. The simulated model can equally be used to analyze commission error, as well as model error and data inconsistencies to a limited extent. The proposed method is applied to South Korea and shows clearly where existing gravity data are too scarce for precise geoid computation.  相似文献   
35.
A three-step hierarchical Semi Automated Empirical Methane Emission Model (SEMEM) has been used to estimate methane emission from wetlands and waterlogged areas in India using Moderate Resolution Imagine Spectroradiometer (MODIS) sensor data onboard Terra satellite. Wetland Surface Temperature (WST), methane emission fluxes and wetland extent have been incorporated as parameters in order to model the methane emission. Analysis of monthly MODIS data covering the whole of India from November 2004 to April 2006 was carried out and monthly methane emissions have been estimated. Interpolation techniques were adopted to fill the data gaps due to cloudy conditions during the monsoon period. AutoRegressive Integrated Moving Average (ARIMA) model has been fitted to estimate the emitted methane for the months of May 2006 to August 2006 using SPSS software.  相似文献   
36.
This paper presents a simple and effective approach that incorporates single-frequency, L1 time-differenced GPS carrier phase (TDCP) measurements without the need of ambiguity resolution techniques and the complexity to accommodate the delayed-state terms. Static trial results are included to illustrate the stochastic characteristics and effectiveness of the TDCP measurements in controlling position error growth. The formulation of the TDCP observation model is also described in a 17-state tightly-coupled GPS/INS iterative, extended Kalman filter (IEKF) approach. Preliminary land vehicle trial results are also presented to illustrate the effectiveness of the TDCP which provides sub-meter positional accuracies when operating for more than 10 min.  相似文献   
37.
With growing urban expanses, one of the pre-requisites for effective governance is Urban Information Systems (UIS) with content down to individual properties (and individuals). The basic input i.e., a map, in UIS should show individual property boundaries showing the plan outline of all structures existing within, at a scale of 1:1000 and larger with sub-metre to centimeters planimetric and geometric accuracy. With very high resolution remote sensing data of the order of 1m available in hand, it is possible to prepare maps with high resolution spatial content. The present exercise demonstrates a method of preparing a geometrically and planimetrically accurate urban cadastral map on very large scale for a small area of about 5 sq km. IKONOS merged data with 1m resolution is used for the purpose. Mapping was done in conjunction with on-site measurements and sketches. Guides are used to maintain shape symmetry and accuracy of buildings and other features. Working out cost of mapping per unit area is another objective in the present exercise. For want of fully or semi-automatic methods of information extraction from very high resolution remote sensing data, it is imperative that mapping should be carried out in conjunction with some on-site measurements wherever necessary.  相似文献   
38.
39.
Use of laser range and height texture cues for building identification   总被引:1,自引:0,他引:1  
Airborne LiDAR has found application in an increasing number of mapping and Geo-data acquisition tasks. Apart from terrain information generation, applications such as automatic detection and modeling of objects like buildings or vegetation for the generation of 3-D city models have been explored. Besides the height itself, height texture defined by local variations of the height is a significant parameter for object recognition. The paper explores the potential of the analysis of height texture as a cue for the automatic detection of objects in LiDAR datasets. A number of texture measures were computed. Based on their definition and computation these measures were used as bands in a classification algorithm, and objects like buildings, single trees, and roads could be recognized.  相似文献   
40.
All gravity field functionals obtained from an Earth gravitational model (EGM) depend on the underlying terrestrial reference frame (TRF), with respect to which the EGM’s spherical harmonic coefficients refer to. In order to maintain a coherent framework for the comparison of current and future EGMs, it is thus important to investigate the consistency of their inherent TRFs, especially when their use is intended for high precision studies. Following the methodology described in an earlier paper by Kleusberg (1980), the similarity transformation parameters between the associated reference frames for several EGMs (including the most recent CHAMP/GRACE models at the time of writing this paper) are estimated in the present study. Specifically, the differences between the spherical harmonic coefficients for various pairs of EGMs are parameterized through a 3D-similarity spatial transformation model that relates their underlying TRFs. From the least-squares adjustment of such a parametric model, the origin, orientation and scale stability between the EGMs’ reference frames can be identified by estimating their corresponding translation, rotation and scale factor parameters. Various aspects of the estimation procedure and its results are highlighted in the paper, including data weighting schemes, the sensitivity of the results with respect to the selected harmonic spectral band, the correlation structure and precision level of the estimated transformation parameters, the effect of the estimated differences of the EGMs’ reference frames on their height anomaly signal, and the overall feasibility of Kleusberg’s formulae for the assessment of TRF inconsistencies among global geopotential models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号