首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   632篇
  免费   55篇
  国内免费   1篇
测绘学   17篇
大气科学   36篇
地球物理   228篇
地质学   225篇
海洋学   13篇
天文学   113篇
综合类   11篇
自然地理   45篇
  2024年   2篇
  2023年   2篇
  2022年   5篇
  2021年   10篇
  2020年   11篇
  2019年   10篇
  2018年   44篇
  2017年   42篇
  2016年   63篇
  2015年   52篇
  2014年   48篇
  2013年   49篇
  2012年   34篇
  2011年   24篇
  2010年   36篇
  2009年   23篇
  2008年   24篇
  2007年   22篇
  2006年   23篇
  2005年   12篇
  2004年   9篇
  2003年   13篇
  2002年   8篇
  2001年   9篇
  2000年   12篇
  1999年   8篇
  1998年   11篇
  1997年   2篇
  1996年   10篇
  1995年   5篇
  1994年   4篇
  1993年   7篇
  1992年   4篇
  1991年   9篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1979年   2篇
  1976年   1篇
  1974年   1篇
  1973年   3篇
  1971年   2篇
  1970年   1篇
  1969年   2篇
排序方式: 共有688条查询结果,搜索用时 250 毫秒
681.
682.
During the Last Glacial Maximum (LGM), long valley glaciers developed on the northern and southern sides of the High Tatra Mountains, Poland and Slovakia. Chlorine-36 exposure dating of moraine boulders suggests two major phases of moraine stabilization, at 26–21 ka (LGM I — maximum) and at 18 ka (LGM II). The dates suggest a significantly earlier maximum advance on the southern side of the range. Reconstructing the geometry of four glaciers in the Sucha Woda, Pańszczyca, Mlynicka and Velicka valleys allowed determining their equilibrium-line altitudes (ELAs) at 1460, 1460, 1650 and 1700 m asl, respectively. Based on a positive degree-day model, the mass balance and climatic parameter anomaly (temperature and precipitation) has been constrained for LGM I advance. Modeling results indicate slightly different conditions between northern and southern slopes. The N–S ELA gradient finds confirmation in slightly higher temperature (at least 1 °C) or lower precipitation (15%) on the south-facing glaciers during LGM I. The precipitation distribution over the High Tatra Mountains indicates potentially different LGM atmospheric circulation than at the present day, with reduced northwesterly inflow and increased southerly and westerly inflows of moist air masses.  相似文献   
683.
It is well known that there is a temporal relationship between coronal mass ejections (CMEs) and associated flares. The duration of the acceleration phase is related to the duration of the rise phase of a flare. We investigate CMEs associated with slow long duration events (LDEs), i.e. flares with the long rising phase. We determined the relationships between flares and CMEs and analyzed the CME kinematics in detail. The parameters of the flares (GOES flux, duration of the rising phase) show strong correlations with the CME parameters (velocity, acceleration during main acceleration phase, and duration of the CME acceleration phase). These correlations confirm the strong relation between slow LDEs and CMEs. We also analyzed the relation between the parameters of the CMEs, i.e. a velocity, an acceleration during the main acceleration phase, a duration of the acceleration phase, and a height of a CME at the end of the acceleration phase. The CMEs associated with the slow LDEs are characterized by high velocity during the propagation phase, with the median equal to 1423 km?s?1. In half of the analyzed cases, the main acceleration was low (a<300 m?s?2), which suggests that the high velocity is caused by the prolonged acceleration phase (the median for the duration of the acceleration phase is equal 90 minutes). The CMEs were accelerated up to several solar radii (with the median ≈?7 R ), which is much higher than in typical impulsive CMEs. Therefore, slow LDEs may potentially precede extremely strong geomagnetic storms. The analysis of slow LDEs and associated CMEs may give important information for developing more accurate space-weather forecasts, especially for extreme events.  相似文献   
684.
A novel theoretical approach is applied to predict the propagation and transformation of transient nonlinear waves on a current. The problem was solved by applying an eigenfunction expansion method and the derived semi-analytical solution was employed to study the transformation of wave profile and the evolution of wave spectrum arising from the nonlinear interactions of wave components in a wave train which may lead to the formation of very large waves. The results show that the propagation of wave trains is significantly affected by a current. A relatively small current may substantially affect wave train components and the wave train shape. This is observed for both opposing and following current. The results demonstrate that the application of the nonlinear model has a substantial effect on the shape of a wave spectrum. A train of originally linear and very narrow-banded waves changes its one-peak spectrum to a multi-peak one in a fairly short distance from an initial position. The discrepancies between the wave trains predicted by applying the linear and nonlinear models increase with the increasing wavelength and become significant in shallow water even for waves with low steepness. Laboratory experiments were conducted in a wave flume to verify theoretical results. The free-surface elevations recorded by a system of wave gauges are compared with the results provided by the nonlinear model. Additional verification was achieved by applying a Fourier analysis and comparing wave amplitude spectra obtained from theoretical results with experimental data. A reasonable agreement between theoretical results and experimental data is observed for both amplitudes and phases. The model predicts fairly well multi-peak spectra, including wave spectra with significant nonlinear wave components.  相似文献   
685.
The X-band EPR and magnetic susceptibility in the temperature range 4.2–300 K study of the shungite-I, natural nanostructured material from the deposit of Shunga are reported. Obtained results allow us to assign the EPR signal to conduction electrons, estimate their number, N P, and evaluate the Pauli paramagnetism contribution to shungite susceptibility. A small occupation (~5%) of the localized nonbonding π states in the zigzag edges of the open-ended graphene-like layers and/or on σ (sp 2+x ) orbitals in the curved parts of the shungite globules has been also revealed. The observed temperature dependence of the EPR linewidth can be explained by the earlier considered interaction of conduction π electrons with local phonon modes associated with the vibration of peripheral carbon atoms of the open zigzag-type edges and with peripheral carbon atoms cross-linking different nanostructures. The relaxation time T 2 and diffusion time T D are found to have comparable values (2.84 × 10−8 and 1.73 × 10−8 s at 5.2 K, respectively), and similar dependence on temperature. The magnetic measurements have revealed the suppression of orbital diamagnetism due to small amount of large enough fragments of the graphene layers.  相似文献   
686.
The Izera Complex (West Sudetes) contains widespread bodies of metagabbro, metadolerite and amphibolite (the Izera metabasites), and less abundant dykes of weakly altered dolerites, emplaced in a continental setting. The primary magmas of the Izera metabasites were probably formed through adiabatic decompression melting of upwelling asthenosphere (mantle plume) that was associated with the early Palaeozoic fragmentation of Gondwana (initial rift). The rocks are mildly alkaline, transitional-to-tholeiitic basalts and have OIB-like trace element patterns. Trace element modelling reveals that the mafic magmas were generated by variable degrees of partial melting (1–7%) of fertile, garnet-bearing asthenospheric source similar in composition to primitive mantle. Together with an increase in degree of partial melting, the compositional affinity of the magmas and the depth of segregation changed progressively from ca. 70–90 km (mildly alkaline magmas of the metadolerites and amphibolites) to ca. 60–75 km (transitional-to-tholeiitic magmas of the metagabbros). The systematics of incompatible versus compatible element distribution, and major and trace element modelling, indicate that some rocks experienced low-pressure (<5 kbar) differentiation resulting in up to 50% fractionation of clinopyroxene, olivine and minor plagioclase and ilmenite. The genetically distinct weakly altered dolerites are basaltic andesite in composition and possibly related to late- or post-orogenic events in the Karkonosze-Izera Block. These rocks are calc-alkaline, with relatively flat MREE–HREE patterns, enrichment in LREE and other highly incompatible elements relative to primitive mantle, and negative Nb–Ta, Ti, P anomalies. The geochemical features and geochemical modelling, indicate that their primary magmas segregated at depths ≤70 km and were produced by ~2% melting of a metasomatized sublithospheric mantle source presumably containing small amounts of hydrated phases. Although the present study is inconclusive as to the origin of the metasomatic component in the source (? slab-derived fluid/melts, OIB-like alkaline melt percolation of subcontinental lithosphere), the genesis of the Izera basaltic andesites is seemingly related to upwelling of asthenosphere and heat flow triggered by a postulated decoupling of the mantle lithosphere and post-collisional extensional collapse and uplift in the Karkonosze-Izera Block.  相似文献   
687.
This study aims at investigating pre-instrumental tree-ring based winter thermal conditions from Upper Silesia, southern Poland. The Scots pine, pedunculate oak and sessile oak ring widths and the extreme index were used to reconstruct winter mean temperature back to A.D. 1770. The climate response analysis showed that the pine is the most sensitive to February (0.36) and March (0.41) temperature, the oaks were found to be sensitive to the previous December (0.27) and January (0.23) temperature. It was found out that the combination of temperature sensitive species and an additional extreme index in regression can improve the reconstruction, with an emphasis on more reliable reconstruction of extreme values. The elimination of variance reduction and precise reconstruction of actual values of temperature is possible by scaling. The obtained calibration/verification results suggest that, through the application of the long-term composite chronologies a detailed study of the climate variability in Upper Silesia in past centuries can be provided.  相似文献   
688.
The goal of the research was to demonstrate the impact of thin porous interfacial transition zones (ITZs) between aggregates and cement matrix on fluid flow in unsaturated concrete caused by hydraulic/capillary pressure. To demonstrate this impact, a novel coupled approach to simulate the two-phase (water and moist air) flow of hydraulically and capillary-driven fluid in unsaturated concrete was developed. By merging the discrete element method (DEM) with computational fluid dynamics (CFD) under isothermal settings, the process was numerically studied at the meso-scale in two-dimensional conditions. A flow network was used to describe fluid behaviour in a continuous domain between particles. Small concrete specimens of a simplified particle mesostructure were subjected to fully coupled hydro-mechanical simulation tests. A simple uniaxial compression test was used to calibrate the pure DEM represented by bonded spheres, while a permeability and sorptivity test for an assembly of spheres was used to calibrate the pure CFD. For simplified specimens of the pure cement matrix, cement matrix with aggregate, and cement matrix with aggregate and ITZ of a given thickness, DEM/CFD simulations were performed sequentially. The numerical results of permeability and sorptivity were directly compared to the data found in the literature. A satisfactory agreement was achieved. Porous ITZs in concrete were found to reduce sorption by slowing the capillary-driven fluid flow, and to speed the full saturation of pores when sufficiently high hydraulic water pressures were dominant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号