首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   340篇
  免费   18篇
  国内免费   8篇
测绘学   28篇
大气科学   29篇
地球物理   68篇
地质学   112篇
海洋学   13篇
天文学   83篇
综合类   1篇
自然地理   32篇
  2023年   1篇
  2021年   4篇
  2020年   7篇
  2019年   12篇
  2018年   9篇
  2017年   14篇
  2016年   11篇
  2015年   12篇
  2014年   17篇
  2013年   26篇
  2012年   15篇
  2011年   13篇
  2010年   19篇
  2009年   29篇
  2008年   16篇
  2007年   16篇
  2006年   18篇
  2005年   18篇
  2004年   23篇
  2003年   11篇
  2002年   14篇
  2001年   17篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1997年   5篇
  1995年   3篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1988年   2篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
排序方式: 共有366条查询结果,搜索用时 0 毫秒
101.
In the last decade, the photospheric solar metallicity as determined from spectroscopy experienced a remarkable downward revision. Part of this effect can be attributed to an improvement of atomic data and the inclusion of NLTE computations, but also the use of hydrodynamical model atmospheres seemed to play a role. This “decrease” with time of the metallicity of the solar photosphere increased the disagreement with the results from helioseismology. With a CO 5 BOLD 3D model of the solar atmosphere, the CIFIST team at the Paris Observatory re-determined the photospheric solar abundances of several elements, among them C, N, and O. The spectroscopic abundances are obtained by fitting the equivalent width and/or the profile of observed spectral lines with synthetic spectra computed from the 3D model atmosphere. We conclude that the effects of granular fluctuations depend on the characteristics of the individual lines, but are found to be relevant only in a few particular cases. 3D effects are not responsible for the systematic lowering of the solar abundances in recent years. The solar metallicity resulting from this analysis is Z=0.0153, Z/X=0.0209.  相似文献   
102.
The ~2,752-Ma Weld Range greenstone belt in the Yilgarn Craton of Western Australia hosts several Fe ore deposits that provide insights into the role of early hypogene fluids in the formation of high-grade (>55 wt% Fe) magnetite-rich ore in banded iron formation (BIF). The 1.5-km-long Beebyn orebody comprises a series of steeply dipping, discontinuous, <50-m-thick lenses of magnetite–(martite)-rich ore zones in BIF that extend from surface to vertical depths of at least 250 m. The ore zones are enveloped by a 3-km-long, 150-m-wide outer halo of hypogene siderite and ferroan dolomite in BIF and mafic igneous country rocks. Ferroan chlorite characterises 20-m-wide proximal alteration zones in mafic country rocks. The magnetite-rich Beebyn orebody is primarily the product of hypogene fluids that circulated through reverse shear zones during the formation of an Archean isoclinal fold-and-thrust belt. Two discrete stages of hypogene fluid flow caused the pseudomorphic replacement of silica-rich bands in BIF by Stage 1 siderite and magnetite and later by Stage 2 ferroan dolomite. The resulting carbonate-altered BIF is markedly depleted in SiO2 and enriched in CaO, MgO, LOI, P2O5 and Fe2O3(total) compared with the least-altered BIF. Subsequent reactivation of these shear zones and circulation of hypogene fluids resulted in the leaching of existing hypogene carbonate minerals and the concentration of residual magnetite-rich bands. These Stage 3 magnetite-rich ore zones are depleted in SiO2 and enriched in K2O, CaO, MgO, P2O5 and Fe2O3(total) relative to the least-altered BIF. Proximal wall rock hypogene alteration zones in mafic igneous country rocks (up to 20 m from the BIF contact) are depleted in SiO2, CaO, Na2O, and K2O and are enriched in Fe2O3(total), MgO and P2O5 compared with distal zones. Recent supergene alteration affects all rocks within about 100 m below the present surface, disturbing hypogene mineral and the geochemical zonation patterns associated with magnetite-rich ore zones. The key vectors for identifying hypogene magnetite-rich Fe ore in weathered outcrop include textural changes in BIF (from thickly to thinly banded), crenulated bands and collapse breccias that indicate volume reduction. Useful indicators of hypogene ore in less weathered rocks include an outer carbonate–magnetite alteration halo in BIF and ferroan chlorite in mafic country rocks.  相似文献   
103.
Electrical conductivities of Ni2SiO4, Fe2SiO4, and MgSiO3 were measured on synthetic powders in the temperature range 340° to 1,100° C and at pressures up to 20 kbars. For ternary compounds such as olivines and pyroxenes the control of two further variables, like the chemical activities of two components are needed, besides temperature and pressure. The activities of the corresponding binary oxides were controlled by equilibrating the samples with their neighbour-phases. Control of the oxygen partial pressure was achieved by buffer techniques. From the slopes of the lg σ vs. 1/T lines the activation energies were calculated for 10 kbar: 0.56 eV and 2.7 eV for Ni2SiO4 in equilibrium with SiO2 and Ni/NiO-buffer for the temperature range 500°–800°C and 800°–1,000°C resp. 0.52 eV for Fe2SiO4 in equilibrium with SiO2 and metallic iron, and 0.38 eV in equilibrium with SiO2 and magnetite; 1.11 eV for MgSiO3 in equilibrium with SiO2, and 1.25 eV in equilibrium with Mg2SiO4.  相似文献   
104.
Calculated phase equilibria among the minerals amphibole, chlorite, clinopyroxene, orthopyroxene, olivine, dolomite, magnesite, serpentine, brucite, calcite, quartz and fluid are presented for the system CaO–FeO–MgO–Al2O3–SiO2–CO2–H2O (CaF-MASCH), with chlorite and H2O–CO2 fluid in excess and for a temperature range of 440°C–600°C and low pressures. The minerals chosen in CaFMASCH represent the great majority of phases encountered in metamorphosed ultramafic rocks. The changes in mineral compositions in terms of FeMg-1 and (Mg, Fe)SiAl-1Al-1 are related to variations in the intensive parameters. For example, equilibria at high in the presence of chlorite involve minerals which are relatively aluminous compared with those at low . The calculated invariant, univariant and divariant equilibria are compared with naturally-occurring greenschist and amphibolite facies ultramafic mineral assemblages. The correspondence of sequences of mineral assemblages and the compositions of the minerals in the assemblages is very good.  相似文献   
105.
The Golden Mile deposit was discovered in 1893 and represents today the largest Archaean orogenic lode gold system in the world (50 M oz produced gold). The Golden Mile deposit comprises three major styles of gold mineralisation: Fimiston, Oroya and Charlotte styles. Fimiston-style lodes formed at 250 to 350 °C and 100 to 200 MPa and are controlled by brittle–ductile fault zones, their subsidiary fault zone and vein networks including breccias and open-cavity-infill textures and hydrothermally altered wall rock. Fimiston lodes were formed late D1, prior to D2 regional upright folding. Hydrothermal alteration haloes comprise a progression toward the lode of diminishing chlorite, an increase in sericite and in Fe content of carbonates. Lodes contain siderite, pyrite, native gold, 17 different telluride minerals (Au–Ag tellurides contain ~25% of total gold), tourmaline, haematite, sericite and V-rich muscovite. Oroya-style lodes formed at similar P–T conditions as the Fimiston lodes and are controlled by brittle–ductile shear zones, associated dilational jogs that are particularly well developed at the contact between Paringa Basalt and black shale interflow sedimentary rocks and altered wall rock. The orebodies are characterised by micro-breccias and zones of intense shear zone foliation, very high gold grades (up to 100,000 g/t Au) and the common association of tellurides and vanadian mica (green leader). Oroya lodes crosscut Fimiston lodes and are interpreted to have formed slightly later than Fimiston lodes as part of one evolving hydrothermal system spanning D1 and D2 deformation (ca. 2,675–2,660 Ma). Charlotte-style lodes, exemplified by the Mt Charlotte deposit, are controlled by a sheeted vein (stockwork) complex of north-dipping quartz veins and hydrothermally altered wall rock. The Mt Charlotte orebody formed at 120 to 440 °C and 150 to 250 MPa during movement along closely spaced D4 (2,625 Ma) and reactivated D2 faults with the quartz granophyre in the Golden Mile Dolerite exerting a strong lithological control on gold mineralisation. Veins consist of quartz–carbonate–minor scheelite, and wall-rock alteration comprises chlorite destruction and growth of ferroan carbonate–sericite–pyrite–native gold. Pyrite–pyrrhotite is zoned on the scale of vein haloes and of the entire mine, giving a vertical temperature gradient of 50–100 °C over 1,000 vertical metres. The structural–hydrothermal model proposed consists of four major stages: (1) D1 thrusting and formation of Fimiston-style lodes, (2) D2 reverse faulting and formation of Oroya-style lodes, (3) D3 faulting and dissecting of Fimiston- and Oroya-style lodes, and (4) D4 faulting and formation of Mt Charlotte-style sheeted quartz vein system. The giant accumulation of gold in the Golden Mile deposit was formed due to protracted gold mineralisation throughout episodes of an Archaean orogeny that spanned about 45 Ma. Fluid conduits formed early in the tectonic history and persisted throughout orogenesis with the plumbing system showing a rare high degree of focussing, efficiency and duration. In addition to the long-lasting fluid plumbing system, the wide variety of transient structural and geochemical traps, multiple fluid sources and precipitation mechanism contributed towards the richest golden mile in the world.Editorial handling: B. Lehmann  相似文献   
106.
The aim of this study is to improve our knowledge of the processes that lead to clay smear during faulting of a layered sand-clay sequence in an analogue sandbox model. We carefully characterized mechanical properties of the materials used by a series of geotechnical tests. Displacement field was quantified using PIV (Particle Image Velocimetry). The model is water-saturated to allow the deformation of wet clay and sand in one experiment comprising a sand package with a horizontal layer of clay above a predefined rigid basement fault. The thickness and rigidity of the clay layer are the parameters varied in this study. The model shows a range of structures that are related to competence contrast between sand and different clay types. Results show ductile shearing of soft clay with a transition to brittle fracturing of stiff clay accompanied by the formation of rotating clay blocks in the fault zone. Localized deformation is observed through time showing (i) the propagation of one active fault migrating laterally through the sediment package, and (ii) the formation of a stable prism between two or more active faults that gets progressively smaller with minor rotation of the hanging wall fault. Continuous clay smear is observed resulting from the lateral injection of clay as well as from a reworked mixture of sand and clay.  相似文献   
107.
108.
The Lonquimay volcanic complex (LVC) in the high Southern Andes comprises a stratocone and NE-trending flank-cone alignments. Numerous effusive and explosive volcanic eruptions characterize its post-glacial magmatic activity. Our tephrostratigraphic record, pre-dating the four historically documented eruptions, comprises 22 dated pyroclastic deposits that are used to constrain repose time distribution and eruption probability of the LVC magmatic system. Statistical examination of the stratigraphy-based eruption time series yields probabilities of 20–50 % for at least one explosive (VEI ≥ 3) eruption within the next 100 years as of 2011. The tephra deposits are subdivided into three petrographic groups: a felsic group (Lonquimay colored-pumice tephra, LCPT), an intermediate population (Lonquimay gray pumice tephra, LGPT), and a mafic member (Lonquimay dark scoria tephra, LDST). The distribution of these petrographic groups through the LVC tephrostratigraphy is linked to the observed changes in repose times. LDST-deposits as well as deposits compositionally zoned from LCPT to LGPT dominate the lower part of the stratigraphy for which recurrence times are short (RTmean = 417 ± 169a). Deposits younger than 6,000 b2k (years before 2000 AD) have dominantly LCPT and minor LDST compositions, no longer contain LGPT, and repose times are significantly longer (RTmean = 1,350 ± 310a). We interpret the change in eruption regime to result from a rearrangement in the magma storage and plumbing system. Thermobarometric calculations based on cpx–liquid equilibria and amphibole compositions reveal three distinct magma storage levels: the mafic LDST derive from mid crustal storage (P mean = 476 ± 95 MPa, T mean = 1,073 ± 24 °C), felsic LCPT mainly erupted from upper-crustal level (P mean = 86 ± 49 MPa, T mean = 936 ± 24 °C), whereas LGPT samples yield intermediate storage depths (P mean = 239 ± 100 MPa, T mean = 1,013 ± 17 °C). Magma contributions from this intermediate reservoir are restricted to >6,000 b2k when the Lonquimay plumbing system was in a regime of short repose times; disappearance of the intermediate reservoir coincides with the change to longer repose times between eruptions.  相似文献   
109.
The development of gypsum maze caves under artesian conditions has been simulated. The numerical model simulations show that the evolution of maze caves in this type of setting requires structural preferences such as laterally extended fissure networks in a horizon of the gypsum layer. Without any structural preferences vertical shafts rather than maze caves are predicted to develop. The most important stage for the development of horizontal caves under artesian conditions is found to be the initial karstification period. During this period the structure of the mature conduit system is established. The solutional enlargement of conduits is spatially extended, total dissolution rates are higher than the later ones.  相似文献   
110.
Mineralogy and Petrology - The scheelite exploration target Messelingscharte (Eastern Tyrol, Austria) is located in vicinity of the world-class Felbertal tungsten deposit. W-(Sn) mineralisation...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号