首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51902篇
  免费   647篇
  国内免费   337篇
测绘学   1502篇
大气科学   3802篇
地球物理   9977篇
地质学   21553篇
海洋学   3721篇
天文学   9703篇
综合类   211篇
自然地理   2417篇
  2020年   196篇
  2019年   181篇
  2018年   3619篇
  2017年   3407篇
  2016年   2280篇
  2015年   595篇
  2014年   639篇
  2013年   1395篇
  2012年   1853篇
  2011年   3738篇
  2010年   3493篇
  2009年   3762篇
  2008年   3048篇
  2007年   3669篇
  2006年   959篇
  2005年   1293篇
  2004年   1199篇
  2003年   1235篇
  2002年   1030篇
  2001年   665篇
  2000年   676篇
  1999年   597篇
  1998年   594篇
  1997年   584篇
  1996年   481篇
  1995年   480篇
  1994年   463篇
  1993年   420篇
  1992年   400篇
  1991年   344篇
  1990年   405篇
  1989年   310篇
  1988年   350篇
  1987年   383篇
  1986年   334篇
  1985年   491篇
  1984年   527篇
  1983年   542篇
  1982年   434篇
  1981年   440篇
  1980年   464篇
  1979年   385篇
  1978年   405篇
  1977年   356篇
  1976年   383篇
  1975年   347篇
  1974年   386篇
  1973年   369篇
  1972年   242篇
  1971年   190篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
601.
A review is made of circulation and currents in the southwestern East/Japan Sea (the Ulleung Basin), and the Korea/Tsushima Strait which is a unique conduit for surface inflow into the Ulleung Basin. The review particularly concentrates on describing some preliminary results from recent extensive measurements made after 1996. Mean flow patterns are different in the upstream and downstream regions of the Korea/Tsushima Strait. A high velocity core occurs in the mid-section in the upstream region, and splits into two cores hugging the coasts of Korea and Japan, the downstream region, after passing around Tsushima Island located in the middle of the strait. Four-year mean transport into the East/Japan Sea through the Korea/Tsushima Strait based on submarine cable data calibrated by direct observations is 2.4 Sv (1 Sv = 106 m3 s−1). A wide range of variability occurs for the subtidal transport variation from subinertial (2–10 days) to interannual scales. While the subinertial variability is shown to arise from the atmospheric pressure disturbances, the longer period variation has been poorly understood.Mean upper circulation of the Ulleung Basin is characterized by the northward flowing East Korean Warm Current along the east coast of Korea and its meander eastward after the separation from the coast, the Offshore Branch along the coast of Japan, and the anticyclonic Ulleung Warm Eddy that forms from a meander of the East Korean Warm Current. Continuous acoustic travel-time measurements between June 1999 and June 2001 suggest five quasi-stable upper circulation patterns that persist for about 3–5 months with transitions between successive patterns occurring in a few months or days. Disappearance of the East Korean Warm Current is triggered by merging the Dok Cold Eddy, originating from the pinching-off of the meander trough, with the coastal cold water carried Southward by the North Korean Cold Current. The Ulleung Warm Eddy persisted for about 20 months in the middle of the Ulleung Basin with changes in its position and spatial scale associated with strengthening and weakening of the transport through the Korea/Tsushima Strait. The variability of upper circulation is partly related to the transport variation through the Korea/Tsushima Strait. Movements of the coastal cold water and the instability of the polar front also appear to be important factors affecting the variability.Deep circulation in the Ulleung Basin is primarily cyclonic and commonly consists of one or more cyclonic cells, and an anticyclonic cell centered near Ulleung Island. The cyclonic circulation is conjectured to be driven by a net inflow through the Ulleung Interplain Gap, which serves as a conduit for the exchange of deep waters between the Japan Basin in the northern East Sea and the Ulleung Basin. Deep currents are characterized by a short correlation scale and the predominance of mesoscale variability with periods of 20–40 days. Seasonality of deep currents is indistinct, and the coupling of upper and deep circulation has not been clarified yet.  相似文献   
602.
Data of an experiment on radio occultation sounding of the atmosphere with the use of GPS signals were used to obtain global distributions of the variances of mesoscale variations in the refractive index in the troposphere and stratosphere. The experiment was carried out with the CHAMP satellite during the period 2001–2005. Measured vertical profiles were smoothed inside 5–10-km-thick layers centered at different altitudes in the troposphere and stratosphere with the use of second-degree polynomials. Deviations from the smoothed quantities and the corresponding variances were obtained for each profile and averaged for each month during the analyzed interval of the CHAMP experiment. Altitude-longitude-latitude inhomogeneities in the distribution of refractive index variances were analyzed. Altitude and latitude distributions of maxima and minima of refractive index variances depend on altitude and season. Turbulence and acoustic gravity waves can be the causes of small-scale and mesoscale variations in the refractive index of the troposphere and stratosphere. The variances of variations in the refractive index are greater in the regions of tropospheric jet streams and in the zones of near-equatorial deep convection. Atmospheric disturbances increase over mountain systems.  相似文献   
603.
Seagrasses are an important coastal habitat worldwide and are indicative of environmental health at the critical land–sea interface. In many parts of the world, seagrasses are not well known, although they provide crucial functions and values to the world's oceans and to human populations dwelling along the coast. Established in 2001, SeagrassNet, a monitoring program for seagrasses worldwide, uses a standardized protocol for detecting change in seagrass habitat to capture both seagrass parameters and environmental variables. SeagrassNet is designed to statistically detect change over a relatively short time frame (1–2 years) through quarterly monitoring of permanent plots. Currently, SeagrassNet operates in 18 countries at 48 sites; at each site, a permanent transect is established and a team of people from the area collects data which is sent to the SeagrassNet database for analysis. We present five case studies based on SeagrassNet data from across the Americas (two sites in the USA, one in Belize, and two in Brazil) which have a common theme of seagrass decline; the study represents a first latitudinal comparison across a hemisphere using a common methodology. In two cases, rapid loss of seagrass was related to eutrophication, in two cases losses related to climate change, and in one case, the loss is attributed to a complex trophic interaction resulting from the presence of a marine protected area. SeagrassNet results provide documentation of seagrass change over time and allow us to make scientifically supported statements about the status of seagrass habitat and the extent of need for management action.  相似文献   
604.
The JGOFS program and NASA ocean-color satellites have provided a wealth of data that can be used to test and validate models of ocean biogeochemistry. A coupled three-dimensional general circulation, biogeochemical, and radiative model of the global oceans was validated using these in situ data sources and satellite data sets. Biogeochemical processes in the model were determined from the influences of circulation and turbulence dynamics, irradiance availability, and the interactions among four phytoplankton functional groups (diatoms, chlorophytes, cyanobacteria, and coccolithophores) and four nutrients (nitrate, ammonium, silica, and dissolved iron).Annual mean log-transformed dissolved iron concentrations in the model were statistically positively correlated on basin scale with observations (P<0.05) over the eight (out of 12) major oceanographic basins where data were available. The model tended to overestimate in situ observations, except in the Antarctic where a large underestimate occurred. Inadequate scavenging and excessive remineralization and/or regeneration were possible reasons for the overestimation.Basin scale model chlorophyll seasonal distributions were positively correlated with SeaWiFS chlorophyll in each of the 12 oceanographic basins (P<0.05). The global mean difference was 3.9% (model higher than SeaWiFS).The four phytoplankton groups were initialized as homogeneous and equal distributions throughout the model domain. After 26 years of simulation, they arrived at reasonable distributions throughout the global oceans: diatoms predominated high latitudes, coastal, and equatorial upwelling areas, cyanobacteria predominated the mid-ocean gyres, and chlorophytes and coccolithophores represented transitional assemblages. Seasonal patterns exhibited a range of relative responses: from a seasonal succession in the North Atlantic with coccolithophores replacing diatoms as the dominant group in mid-summer, to successional patterns with cyanobacteria replacing diatoms in mid-summer in the central North Pacific. Diatoms were associated with regions where nutrient availability was high. Cyanobacteria predominated in quiescent regions with low nutrients.While the overall patterns of phytoplankton functional group distributions exhibited broad qualitative agreement with in situ data, quantitative comparisons were mixed. Three of the four phytoplankton groups exhibited statistically significant correspondence across basins. Diatoms did not. Some basins exhibited excellent correspondence, while most showed moderate agreement, with two functional groups in agreement with data and the other two in disagreement. The results are encouraging for a first attempt at simulating functional groups in a global coupled three-dimensional model but many issues remain.  相似文献   
605.
606.
In July 1999, an at-sea experiment to measure the focus of a 3.5-kHz centered time-reversal mirror (TRM) was conducted in three different environments: an absorptive bottom, a reflective bottom, and a sloping bottom. The experiment included a preliminary exploration of using a TRM to generate binary-phase shift keying communication sequences in each of these environments. Broadside communication transmissions were also made, and single-source communications were simulated using the measured-channel response. A comparison of the results is made and time reversal is shown to be an effective approach for mitigating inter-symbol interference caused by channel multipath.  相似文献   
607.
608.
At hatching the larvae of flatfish closely resemble the bilateral symmetric larvae of other teleosts, especially perciforms. Literature data show that transformation to asymmetric benthic juveniles normally occurs at body lengths between 10 and 25 mm. Unexpectedly, minimal size at its completion (including eye migration) can be 4.1 mm SL and maximal size is over 72 mm. In this paper we consider the functional requirements for a successful switch from a symmetric pelagic larva to a typical asymmetric juvenile benthic flatfish partly based on evidence from other teleosts. The unfavourable period of eye migration and transition to a benthic habitat requires some food reserves and rewiring and/or recalibration of vision and gravity-associated structures utilised previously by the still symmetric larvae for e.g. food detection. Binocular fixation of the prey probably occurs in that stage. Critical or sensitive periods occurring during development of fish larvae suggest that a completely functional symmetric stage of development must precede transformation. The normal size range in flatfish larvae at transformation seems to confirm our considerations. Recent data on temperature effects during development provide an explanation for metamorphosis at the minimal size. Some evidence for paedomorphic heterochrony in flatfish larvae is presented.  相似文献   
609.
The large-scale (km) distributional patterns of juvenile bivalves are established by larval settlement and subsequently changed due to actively initiated postlarval migrations (byssus-drifting), resuspension during sediment disturbance, and local differences in mortality. Repeated mapping of 0-group bivalve distribution during two summers was combined with simultaneous registrations of the numbers of drifting specimens. Species differed in their susceptibility to passive resuspension and their activity in byssus-drifting, but the two ways of entry into the water column were independent of each other. As a result, the relative magnitude of byssus-drifting and passive resuspension varied with the species. While hydrographical conditions always determined the changes in the distributional patterns of passively eroded species, this was not the case in active migrations of byssus-drifting bivalves. A comparison of the distributional patterns of juveniles over two consecutive years showed similar patterns in the tellinid clam Macoma balthica and the razor clam Ensis americanus. In these two species spatfall mainly occurred around mean low-tide level. Subsequently, juvenile M. balthica rapidly accumulated in the upper intertidal, whereas juvenile E. americanus accumulated subtidally. In mussels Mytilus edulis the distribution of juveniles only changed in a longshore direction, not in the tidal level occupied. The spatial pattern of cockles Cerastoderma edule changed from aggregation of the early spat in the mid and lower intertidal towards a more uniform distribution of recruits over these tidal flats. There were only a few patches of high abundance left at the end of summer. Finally, in juvenile clams Mya arenaria the spatial patterns of both spatfall and redistribution were unpredictable.On a km-scale, abundance of some species correlated with sediment granulometry. Presumably, this does not reflect a causal relationship but is a consequence of the correlation between grain size distribution and tidal level within the area studied. On a scale of hundreds of metres, there were no consistent correlations between juvenile abundance and sediment granulometry in any species. In summary, it seems that hydrography ruled the initial settlement of larvae to the sediment and strongly influenced the subsequent redistribution of juveniles caused by passive resuspension. The outcome of actively initiated migrations, on the other hand, was only weakly influenced by hydrography. Therefore it is suggested that hydrography plays a dominant role in the initial development of km-scale distributional patterns of just-settled bivalves in the Wadden Sea, while habitat selection is delayed to the byssus-drifting postlarvae phase.  相似文献   
610.
Physical and biological processes controlling spatial and temporal variations in material concentration and exchange between the Southern Everglades wetlands and Florida Bay were studied for 2.5 years in three of the five major creek systems draining the watershed. Daily total nitrogen (TN), and total phosphorus (TP) fluxes were measured for 2 years in Taylor River, and ten 10-day intensive studies were conducted in this creek to estimate the seasonal flux of dissolved inorganic nitrogen (N), phosphorus (P), total organic carbon (TOC), and suspended matter. Four 10-day studies were conducted simultaneously in Taylor, McCormick, and Trout Creeks to study the spatial variation in concentration and flux. The annual fluxes of TOC, TN, and TP from the Southern Everglades were estimated from regression equations. The Southern Everglades watershed, a 460-km2 area that includes Taylor Slough and the area south of the C-111 canal, exported 7.1 g C m−2, 0.46 g N m−2, and 0.007 g P m−2, annually. Everglades P flux is three to four orders of magnitude lower than published flux estimates from wetlands influenced by terrigenous sedimentary inputs. These low P flux values reflect both the inherently low P content of Everglades surface water and the efficiency of Everglades carbonate sediments and biota in conserving and recycling this limiting nutrient. The seasonal variation of freshwater input to the watershed was responsible for major temporal variations in N, P, and C export to Florida Bay; approximately 99% of the export occurred during the rainy season. Wind-driven forcing was most important during the later stages of the dry season when low freshwater head coincided with southerly winds, resulting in a net import of water and materials into the wetlands. We also observed an east to west decrease in TN:TP ratio from 212:1 to 127:1. Major spatial gradients in N:P ratios and nutrient concentration and flux among the creek were consistent with the westward decrease in surface water runoff from the P-limited Everglades and increased advection of relatively P-rich Gulf of Mexico (GOM) waters into Florida Bay. Comparison of measured nutrient flux from Everglades surface water inputs from this study with published estimates of other sources of nutrients to Florida Bay (i.e. atmospheric deposition, anthropogenic inputs from the Florida Keys, advection from the GOM) show that Everglades runoff represents only 2% of N inputs and 0.5% of P input to Florida Bay.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号