首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   380篇
  免费   6篇
  国内免费   4篇
测绘学   14篇
大气科学   25篇
地球物理   76篇
地质学   155篇
海洋学   12篇
天文学   91篇
自然地理   17篇
  2023年   2篇
  2020年   3篇
  2019年   7篇
  2018年   8篇
  2017年   5篇
  2016年   7篇
  2015年   12篇
  2014年   21篇
  2013年   14篇
  2012年   11篇
  2011年   17篇
  2010年   17篇
  2009年   29篇
  2008年   20篇
  2007年   22篇
  2006年   21篇
  2005年   17篇
  2004年   11篇
  2003年   28篇
  2002年   17篇
  2001年   7篇
  2000年   8篇
  1999年   9篇
  1998年   7篇
  1997年   6篇
  1996年   2篇
  1995年   2篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1988年   2篇
  1986年   4篇
  1984年   3篇
  1981年   3篇
  1980年   4篇
  1975年   2篇
  1971年   3篇
  1970年   2篇
  1967年   3篇
  1958年   2篇
  1956年   2篇
  1953年   1篇
  1952年   1篇
  1951年   1篇
  1950年   2篇
  1949年   1篇
  1948年   1篇
  1942年   1篇
  1940年   1篇
  1939年   1篇
排序方式: 共有390条查询结果,搜索用时 15 毫秒
381.
382.
A major legacy of the EGRET experiment aboard the Compton Gamma-Ray Observatory (CGRO) is the detection of a large number of unidentified Gamma-ray sources. Out of the 271 EGRET sources are 170 not identified yet [Hartman et al. ApJS (123) (1999) 79]. To provide additional information on these unidentified EGRET sources, we derived simultaneous MeV fluxes or flux limits for each source by analyzing the contemporaneous COMPTEL data. Then we compare these MeV fluxes to the extrapolations of the published EGRET spectra. Our results can be grouped into 4 categories [Zhang et al. A&A (421) (2004) 983]: (1) non-constraining upper limits (∼120 sources), (2) hints (> 2 sigma) or detections with consistent MeV fluxes (∼16 sources), (3) enhanced MeV emission (2 sources), and (4) constraining MeV flux limits, requiring a spectral break (∼22 sources). In summary, for about 40 of the unidentified EGRET sources we can provide supplementary spectral information in the neighboring gamma-ray band, which – together with other source parameters – might provide clues to the underlying source nature.  相似文献   
383.
384.
385.
For the Tortonian, Steppuhn et al. [Steppuhn, A., Micheels, A., Geiger, G., Mosbrugger, V., 2006. Reconstructing the Late Miocene climate and oceanic heat flux using the AGCM ECHAM4 coupled to a mixed-layer ocean model with adjusted flux correction. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 399–423] perform a model simulation which considers a generally lower palaeorography, a weaker ocean heat transport and an atmospheric CO2 concentration of 353 ppm. The Tortonian simulation of Steppuhn et al. [Steppuhn, A., Micheels, A., Geiger, G., Mosbrugger, V., 2006. Reconstructing the Late Miocene climate and oceanic heat flux using the AGCM ECHAM4 coupled to a mixed-layer ocean model with adjusted flux correction. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 399–423] demonstrates some realistic trends: the high latitudes are warmer than today and the meridional temperature gradient is reduced. However, the Tortonian run also indicates some insufficiencies such as too cool mid-latitudes which can be due to an underestimated pCO2 in the atmosphere. As a sensitivity study, we perform a further model experiment for which we additionally increase the atmospheric carbon dioxide (700 ppm). According to this CO2 sensitivity experiment, we find a global warming and a globally more intense water cycle as compared to the previous Tortonian run. Particularly the high latitudes are warmer in the Tortonian CO2 sensitivity run which leads to a lower amount of Arctic sea ice and a reduced equator-to-pole temperature difference. Our Tortonian CO2 sensitivity study basically agrees with results from recent climate model experiments which consider an increase of CO2 during the next century (e.g. [Cubasch, U., Meehl, G.A., Boer, G.J., Stouffer, R.J., Dix, M., Noda, A., Senior, C.A., Raper, S., Yap, K.S., 2001. Projections of Future Climate Change. In: Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, C.A. Johnson (eds.), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 525–582]) suggesting that the climatic response on a higher atmospheric CO2 concentration is almost independent from the different settings of boundary conditions (Tortonian versus today). To validate the Tortonian model simulations, we perform a quantitative comparison with terrestrial proxy data. This comparison demonstrates that the Tortonian CO2 sensitivity experiment tends to be more realistic than the previous Tortonian simulation by Steppuhn et al. [Steppuhn, A., Micheels, A., Geiger, G., Mosbrugger, V., 2006. Reconstructing the Late Miocene climate and oceanic heat flux using the AGCM ECHAM4 coupled to a mixed-layer ocean model with adjusted flux correction. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 399–423]. However, a high carbon dioxide concentration of 700 ppm is questionable for the Late Miocene, and it cannot explain shortcomings of our Tortonian run with ‘normal’ CO2. In order to fully understand the Late Miocene climate, further model experiments should also consider the palaeovegetation.  相似文献   
386.
We simulate the assembly of a massive rich cluster and the formation of its constituent galaxies in a flat, low-density universe. Our most accurate model follows the collapse, the star formation history and the orbital motion of all galaxies more luminous than the Fornax dwarf spheroidal, while dark halo structure is tracked consistently throughout the cluster for all galaxies more luminous than the SMC. Within its virial radius this model contains about     dark matter particles and almost 5000 distinct dynamically resolved galaxies. Simulations of this same cluster at a variety of resolutions allow us to check explicitly for numerical convergence both of the dark matter structures produced by our new parallel N -body and substructure identification codes, and of the galaxy populations produced by the phenomenological models we use to follow cooling, star formation, feedback and stellar aging. This baryonic modelling is tuned so that our simulations reproduce the observed properties of isolated spirals outside clusters. Without further parameter adjustment our simulations then produce a luminosity function, a mass-to-light ratio, luminosity, number and velocity dispersion profiles, and a morphology–radius relation which are similar to those observed in real clusters. In particular, since our simulations follow galaxy merging explicitly, we can demonstrate that it accounts quantitatively for the observed cluster population of bulges and elliptical galaxies.  相似文献   
387.
Sustainable water quality management requires a profound understanding of water fluxes (precipitation, run-off, recharge, etc.) and solute turnover such as retention, reaction, transformation, etc. at the catchment or landscape scale. The Water and Earth System Science competence cluster (WESS, http://www.wess.info/) aims at a holistic analysis of the water cycle coupled to reactive solute transport, including soil–plant–atmosphere and groundwater–surface water interactions. To facilitate exploring the impact of land-use and climate changes on water cycling and water quality, special emphasis is placed on feedbacks between the atmosphere, the land surface, and the subsurface. A major challenge lies in bridging the scales in monitoring and modeling of surface/subsurface versus atmospheric processes. The field work follows the approach of contrasting catchments, i.e. neighboring watersheds with different land use or similar watersheds with different climate. This paper introduces the featured catchments and explains methodologies of WESS by selected examples.  相似文献   
388.
After the collapse of the Soviet Union, the forestry sector in Russia underwent substantial changes: the state forestry sector was decentralized, the timber industry was privatized, and timber use rights were allocated through short- and long-term leases. To date, there has been no quantitative assessment of the drivers of timber harvesting in European Russia following these changes. In this paper we estimate an econometric model of timber harvesting using remote sensing estimations of forest disturbance from 1990–2000 to 2000–2005 as our dependent variable. We aggregate forest disturbance to administrative districts – equivalent to counties in the United States – and test the impact of several biophysical and economic factors on timber harvesting. Additionally, we examine the impact that regions – equivalent to states in the United States and the main level of decentralized governance in Russia – have on timber harvesting by estimating the influence of regional-level effects on forest disturbance in our econometric model. Russian regions diverged considerably in political and economic conditions after the collapse of the Soviet Union, and the question is if these variations impacted timber harvesting after controlling for district-level biophysical and economic drivers. We find that the most important drivers of timber harvesting at the district level are road density, the percent of evergreen forest, and the total area of forest. The influence of these variables on timber harvesting changed over time and there was more harvesting closer to urban areas in 2000–2005. Even though district-level variables explain more than 70 percent of the variation in forest disturbance in our econometric model, we find that regional-level effects remain statistically significant. While we cannot identify the exact mechanism through which regional-level effects impact timber harvesting, our results suggest that sub-national differences can have a large and statistically significant impact on land-use outcomes and should be considered in policy design and evaluation.  相似文献   
389.
390.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号