首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   706篇
  免费   43篇
  国内免费   8篇
测绘学   21篇
大气科学   57篇
地球物理   248篇
地质学   242篇
海洋学   62篇
天文学   74篇
综合类   1篇
自然地理   52篇
  2023年   6篇
  2021年   18篇
  2020年   10篇
  2019年   14篇
  2018年   31篇
  2017年   23篇
  2016年   22篇
  2015年   24篇
  2014年   29篇
  2013年   49篇
  2012年   32篇
  2011年   36篇
  2010年   48篇
  2009年   39篇
  2008年   39篇
  2007年   40篇
  2006年   28篇
  2005年   30篇
  2004年   29篇
  2003年   32篇
  2002年   23篇
  2001年   14篇
  2000年   12篇
  1999年   12篇
  1998年   11篇
  1997年   7篇
  1996年   8篇
  1995年   4篇
  1994年   3篇
  1992年   4篇
  1990年   3篇
  1989年   5篇
  1988年   2篇
  1987年   10篇
  1986年   5篇
  1985年   5篇
  1984年   4篇
  1983年   5篇
  1982年   2篇
  1981年   5篇
  1980年   5篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
  1971年   2篇
  1907年   1篇
排序方式: 共有757条查询结果,搜索用时 250 毫秒
611.
Understanding water infiltration and transfer in soft‐clay shales slopes is an important scientific issue, especially for landsliding. Geochemical investigations are carried out at the Super‐Sauze and Draix‐Laval landslides, both developed in the Callovo‐Oxfordian black marls, with the objective to define the origin of the groundwater. In situ investigations, soil leaching experiments and geochemical modeling are combined to identify the boundaries of the hydrological systems. At Super‐Sauze, the observations indicate that an external water flow occurs in the upper part of the landslide at the contact between the weathered black marls and the overlying formations, or at the landslide basement through a fault network. Such external origin of water is not observed at the local scale of the Draix‐Laval landslide but is detected at the catchment scale with the influence of deep waters in the streamwater quality of low river flows. Hydrogeological conceptual models are proposed emphasizing the role of the interactions between local (slope) and regional (catchment) flow systems. The observations suggest that this situation is a common case in the Alpine area. Expected consequences of the regional flows on slope stability are discussed in term of rise of pore water pressures and physicochemical weathering of the clay shales.  相似文献   
612.
Laurie Boithias  Yves Auda  Stéphane Audry  Jean-Pierre Bricquet  Alounsavath Chanhphengxay  Vincent Chaplot  Anneke de Rouw  Thierry Henry des Tureaux  Sylvain Huon  Jean-Louis Janeau  Keooudone Latsachack  Yann Le Troquer  Guillaume Lestrelin  Jean-Luc Maeght  Pierre Marchand  Pierre Moreau  Andrew Noble  Anne Pando-Bahuon  Kongkeo Phachomphon  Khambai Phanthavong  Alain Pierret  Olivier Ribolzi  Jean Riotte  Henri Robain  Emma Rochelle-Newall  Saysongkham Sayavong  Oloth Sengtaheuanghoung  Norbert Silvera  Nivong Sipaseuth  Bounsamay Soulileuth  Xaysatith Souliyavongsa  Phapvilay Sounyaphong  Sengkeo Tasaketh  Chanthamousone Thammahacksa  Jean-Pierre Thiebaux  Christian Valentin  Olga Vigiak  Marion Viguier  Khampaseuth Xayyathip 《水文研究》2021,35(5):e14126
Mountain regions of the humid tropics are characterized by steep slopes and heavy rains. These regions are thus prone to both high surface runoff and soil erosion. In Southeast Asia, uplands are also subject to rapid land-use change, predominantly as a result of increased population pressure and market forces. Since 1998, the Houay Pano site, located in northern Lao PDR (19.85°N 102.17°E) within the Mekong basin, aims at assessing the long-term impact of the conversion of traditional slash-and-burn cultivation systems to commercial perennial monocultures such as teak tree plantations, on the catchment hydrological response and sediment yield. The instrumented site monitors hydro-meteorological and soil loss parameters at both microplot (1 m2) and small catchment (0.6 km2) scales. The monitored catchment is part of the network of critical zone observatories named Multiscale TROPIcal CatchmentS (M-TROPICS). The data shared by M-TROPICS in Houay Pano are (1) rainfall, (2) air temperature, air relative humidity, wind speed, and global radiation, (3) catchment land use, (4) stream water level, suspended particulate matter, bed particulate matter and stones, (5) soil surface features, and (6) soil surface runoff and soil detachment. The dataset has already been used to interpret suspended particulate matter and bed particulate matter sources and dynamics, to assess the impact of land-use change on catchment hydrology, soil erosion, and sediment yields, to understand bacteria fate and weed seed transport across the catchment, and to build catchment-scale models focused on hydrology and water quality issues. The dataset may be further used to, for example, assess the role of headwater catchments in large tropical river basin hydrology, support the interpretation of new variables measured in the catchment (e.g., contaminants other than faecal bacteria), and assess the relative impacts of both climate and land-use change on the catchment.  相似文献   
613.
Preferential subsurface flow paths known as water tracks are often the principal hydrological pathways of headwater catchments in permafrost areas, exerting an influence on slope physical and biogeochemical processes. In polar deserts, where water resources depend on snow redistribution, water tracks are mostly found in hydrologically active areas downslope from snowdrifts. Here, we measured the flow through seeping water track networks and at the front of a perennial snowdrift, at Ward Hunt Island in the Canadian High Arctic. We also used stable isotope analysis to determine the origin of this water, which ultimately discharges into Ward Hunt Lake. These measurements of water track hydrology indicated a glacio‐nival run‐off regime, with flow production mechanisms that included saturation overland flow (return flow) in a low sloping area, throughflow or pipe‐like flow in most seepage locations, and infiltration excess overland flow at the front of the snowdrift. Each mechanism delivered varying proportions of snowmelt and ground water, and isotopic compositions evolved during the melting season. Unaltered snowmelt water contributed to >90% of total flow from water track networks early in the season, and these values fell to <5% towards the end of the melting season. In contrast, infiltration excess overland flow from snowdrift consisted of a steady percentage of snowmelt water in July (mean of 69%) and August (71%). The water seeping at locations where no snow was left in August 2015 was isotopically enriched, indicating a contribution of the upper, ice‐rich layer of permafrost to late summer discharge during warmer years. Air temperature was the main driver of snowmelt, but the effect of slope aspect on solar radiation best explained the diurnal discharge variation at all sites. The water tracks in this polar desert are part of a patterned ground network, which increases connectivity between the principal water sources (snowdrifts) and the bottom of the slope. This would reduce soil–water interactions and solute release, thereby favouring the low nutrient status of the lake.  相似文献   
614.
Dynamic models of the martian polar caps are in abundance, but most rely on the assumption that the rate of sublimation of CO2 ice can be calculated from heat transfer and lack experimental verification. We experimentally measured the sublimation rate of pure CO2 ice under simulated martian conditions as a test of this assumption, developed a model based on our experimental results, and compared our model's predictions with observations from several martian missions (MRO, MGS, Viking). We show that sun irradiance is the primary control for the sublimation of CO2 ice on the martian poles with the amount of radiation penetrating the surface being controlled by variations in the optical depth, ensuring the formation and sublimation of the seasonal cap. Our model confirmed by comparison of MGS-MOC and MRO-HiRISE images, separated by 2-3 martian years, shows that ∼0.4 m are currently being lost from the south perennial cap per martian year. At this rate, the ∼2.4-m-thick south CO2 perennial cap will disappear in about 6-7 martian years, unless a short-scale climatic cycle alters this rate of retreat.  相似文献   
615.
Modeling the impacts of reforestation on future climate in West Africa   总被引:1,自引:0,他引:1  
This study investigates the potential impacts of reforestation in West Africa on the projected regional climate in the near two decades (2031–2050) under the SRES A1B scenario. A regional climate model (RegCM3) forced with a global circulation model (ECHAM5) simulations was used for the study. The study evaluates the capability of the regional model in simulating the present-day climate over West Africa, projects the future climate over the region and investigates impacts of seven hypothetical reforestation options on the projected future climate. Three of these reforestation options assume zonal reforestation over West Africa (i.e., over the Sahel, Savanna and Guinea), while the other four assume random reforestation over Nigeria. With the elevated GHGs (A1B scenario), a warmer and drier climate is projected over West Africa in 2031–2050. The maximum warming (+2.5°C) and drying (?2?mm?day?1) occur in the western part of the Sahel because the West Africa Monsoon (WAM) flow is stronger and deflects the cool moist air more eastward, thereby lowering the warming and drying in the eastern part. In the simulations, reforestation reduces the projected warming and drying over the reforested zones but increases them outside the zones because it influences the northward progression of WAM in summer. It reduces the speed of the flow by weakening the temperature gradient that drives the flow and by increasing the surface drag on the flow over the reforested zone. Hence, in summer, the reforestation delays the onset of monsoon flow in transporting cool moist air over the area located downwind of the reforested zone, consequently enhancing the projected warming and drying over the area. The impact of reforesting Nigeria is not limited to the country; while it lowers the warming over part of the country (and over Togo), it increases the warming over Chad and Cameroon. This study, therefore, suggests that using reforestation to mitigate the projected future climate change in West Africa could have both positive and negative impacts on the regional climate, reducing temperature in some places and increasing it in others. Hence, reforestation in West Africa requires a mutual agreement among the West African nations because the impacts of reforestation do not recognize political boundaries.  相似文献   
616.
617.
618.
A two‐parameter transfer function with an infinite characteristic time is proposed for conceptual rainfall–runoff models. The large time behaviour of the unit response is an inverse power function of time. The infinite characteristic time allows long‐term memory effects to be accounted for. Such effects are observed in mountainous and karst catchments. The governing equation of the model is a fractional differential equation in the limit of long times. Although linear, the proposed transfer function yields discharge signals that can usually be obtained only using non‐linear models. The model is applied successfully to two catchments, the Dud Koshi mountainous catchment in the Himalayas and the Durzon karst catchment in France. It compares favourably to the linear, non‐linear single reservoir models and to the GR4J model. With a single reservoir and a single transfer function, the model is capable of reproducing hysteretic behaviours identified as typical of long‐term memory effects. Computational efficiency is enhanced by approximating the infinite characteristic time transfer function with a sum of simpler, exponential transfer functions. This amounts to partitioning the reservoir into several linear sub‐reservoirs, the output discharges of which are easy to compute. An efficient partitioning strategy is presented to facilitate the practical implementation of the model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
619.
The failure of a discrete elastic‐damage axial system is investigated using both a discrete and an equivalent continuum approach. The Discrete Damage Mechanics approach is based on a microstructured model composed of a series of periodic elastic‐damage springs (axial Discrete Damage Mechanics lattice system). Such a discrete damage system can be associated with the finite difference formulation of a Continuum Damage Mechanics evolution problem. Several analytical and numerical results are presented for the tensile failure of this axial damage chain under its own weight. The nonlocal Continuum Damage Mechanics models examined in this paper are mainly built from a continualization procedure applied to centered or uncentered finite difference schemes. The asymptotic expansion of the first‐order upward difference equations leads to a first‐order nonlocal model, whereas the asymptotic expansion of the centered finite difference equations leads to a second‐order nonlocal Eringen's approach. To complete this study, a phenomenological nonlocal gradient approach is also examined and compared with the first continualization methods. A comparison of the discrete and the continuous problems for the chains shows the effectiveness of the new micromechanics‐based nonlocal Continuum Damage modeling, especially for capturing scale effects. For both continualized approaches, the length scale of the nonlocal models depends only on the cell size, while for the so‐called phenomenological approach, the length scale may depend on the loading parameter. This apparent load‐dependent length scale, already discussed in the literature with numerical arguments, is found to be sensitive to the postulated structure of the nonlocal model calibrated according to a lattice approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
620.
In areas where peatlands are abundant, they are likely to play a significant role in the hydrological and hydrogeological dynamics of a watershed. Although individual case studies are reported in the literature, there is a large range of aquifer–peatland interactions and there is a need to understand the controls of these interactions. The objectives of this study were (1) to better understand aquifer–peatland connections and how these may be predicted by geology and geomorphic location and (2) to provide a variety of reference sites for glacial geological settings. Slope and depression peatlands were studied in the Abitibi‐Témiscamingue region and in the St. Lawrence Lowlands, two contrasting regions of southern Quebec. A total of 12 transects that span a shallow aquifer–peatland interface were instrumented with piezometers. Field investigations included peatland characterization, monthly water level monitoring, and continuous hydraulic head measurements with pressure transducers. The results indicate that 7 of the 12 transects receive groundwater from the surrounding shallow aquifer. At the peatland margin, four lateral flow patterns were identified and associated with slope peatlands (parallel inflow and divergent flow) and with depression peatlands (convergent flow and parallel outflow). Vertical hydraulic gradients suggest that water flows mainly downwards, i.e. from the peatland to the underlying mineral deposits. Vertical connectivity appears to decrease as the distance from the peatland margin increases. All of these exchanges are important components in the sustainability of peatland hydrogeological functions. The regional comparison of aquifer–peatland flow dynamics performed in this study provides a new set of referenced data for the assessment of aquifer–peatland connectivity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号