首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5273篇
  免费   549篇
  国内免费   160篇
测绘学   235篇
大气科学   593篇
地球物理   1954篇
地质学   2152篇
海洋学   270篇
天文学   342篇
综合类   188篇
自然地理   248篇
  2023年   2篇
  2022年   10篇
  2021年   24篇
  2020年   9篇
  2019年   11篇
  2018年   439篇
  2017年   377篇
  2016年   257篇
  2015年   152篇
  2014年   116篇
  2013年   117篇
  2012年   651篇
  2011年   426篇
  2010年   117篇
  2009年   132篇
  2008年   118篇
  2007年   117篇
  2006年   128篇
  2005年   831篇
  2004年   874篇
  2003年   653篇
  2002年   176篇
  2001年   70篇
  2000年   49篇
  1999年   14篇
  1998年   6篇
  1997年   18篇
  1996年   11篇
  1995年   2篇
  1992年   2篇
  1991年   9篇
  1990年   10篇
  1989年   5篇
  1987年   4篇
  1980年   3篇
  1976年   3篇
  1975年   4篇
  1973年   2篇
  1969年   2篇
  1968年   2篇
  1965年   3篇
  1963年   2篇
  1961年   2篇
  1959年   2篇
  1956年   1篇
  1955年   2篇
  1954年   2篇
  1951年   2篇
  1948年   2篇
  1925年   1篇
排序方式: 共有5982条查询结果,搜索用时 15 毫秒
101.
{We investigate the conversion of the 0.5–4 and 1–8 Å soft X-ray flux measurements made by detectors on the Geostationary Operational Environmental Satellites (GOES) into temperature and emission measures of coronal plasma using modern spectral models and modern understanding of coronal abundances. In particular, the original analysis by Thomas, Starr and Crannell (1985) is updated to take into account the realization that coronal abundances may be quite different from photospheric abundances. An important result of this analysis is that the derived temperatures and emission measures depend strongly on the assumed abundances even at high temperatures where continuum rather than spectral lines dominates the Sun’s X-ray spectrum. This occurs because the higher coronal abundances mean that most of the continuum is due to free–bound emission processes, not free–free emission, and thus is abundance-dependent. We find significant differences between modern calculations of the temperature response of the flux measurements and the versions currently in use: for a typical flare, emission measures may be up to a factor of 4 smaller than the current software suggests. Derived temperatures are similar for both photospheric and coronal abundances for cool flares (e.g., 15 MK), but for hot flares (e.g., 35 MK) coronal abundances can lead to significantly (~25%) lower temperatures being derived.  相似文献   
102.
In understanding the nucleosynthesis of the elements in stars, one of the most important quantities is the reaction rate and it must be evaluated in terms of the stellar temperature T, and its determination involves the knowledge of the excitation function σ(E) of the specific nuclear reaction leading to the final nucleus. In this paper, the effect of thermonuclear reaction rates to the pre-main sequence evolution of low mass stars having masses 0.7, 0.8, 0.9 and 1M are studied by using our modified Stellar Evolutionary Program.  相似文献   
103.
104.
Wang et al. (Contrib Mineral Petrol 171:62, 2016a) present data on composition of xenolith from Southern Tibet and conclude that ulrapotassic melts from the region formed by melting mantle, and complex interaction with a crustal component. In this discussion we demonstrate that numerous observations presented by Wang et al. (2016a) can be explained by partial melting of crust followed by interaction between that melt and the mantle. We show that this model can explain the variability of magmas in such suits without evoking occurrence of coincidental, unrelated events. Moreover we demonstrate that our model of a crustal origin of the proto-shoshonite melts is now supported by independent lines of evidence such as geochemistry of restites after high- and ultrahigh- pressure melting and melt inclusion studies.  相似文献   
105.
Hydrous K-rich kimberlite-like systems are studied experimentally at 5.5–7.5 GPa and 1200–1450?°C in terms of phase relations and conditions for formation and stability of phlogopite. The starting samples are phlogopite–carbonatite–phlogopite sandwiches and harzburgite–carbonatite mixtures consisting of Ol?+?Grt?+?Cpx?+?L (±Opx), according to the previous experimental results obtained at the same PT parameters but in water-free systems. Carbonatite is represented by a K- and Ca-rich composition that may form at the top of a slab. In the presence of carbonatitic melt, phlogopite can partly melt in a peritectic reaction at 5.5 GPa and 1200–1350?°C, as well as at 6.3–7.0 GPa and 1200?°C: 2Phl?+?CaCO3 (L)?Cpx?+?Ol?+?Grt?+?K2CO3 (L)?+?2H2O (L). Synthesis of phlogopite at 5.5 GPa and 1200–1350?°C, with an initial mixture of H2O-bearing harzburgite and carbonatite, demonstrates experimentally that equilibrium in this reaction can be shifted from right to left. Therefore, phlogopite can equilibrate with ultrapotassic carbonate–silicate melts in a?≥?150?°C region between 1200 and 1350?°C at 5.5 GPa. On the other hand, it can exist but cannot nucleate spontaneously and crystallize in the presence of such melts in quite a large pressure range in experiments at 6.3–7.0 GPa and 1200?°C. Thus, phlogopite can result from metasomatism of peridotite at the base of continental lithospheric mantle (CLM) by ultrapotassic carbonatite agents at depths shallower than 180–195 km, which creates a mechanism of water retaining in CLM. Kimberlite formation can begin at 5.5 GPa and 1350?°C in a phlogopite-bearing peridotite source generating a hydrous carbonate–silicate melt with 10–15 wt% SiO2, Ca# from 45 to 60, and high K enrichment. Upon further heating to 1450?°C due to the effect of a mantle plume at the CLM base, phlogopite disappears and a kimberlite-like melt forms with SiO2 to 20 wt% and Ca#?=?35–40.  相似文献   
106.
Most igneous charnockites are interpreted to have crystallized at hot and dry conditions, i.e. at >800?°C and <3 wt.% H2O and with an important CO2 component in the system. These charnockites are metaluminous to weakly peraluminous and their formation involves a significant mantle-derived component. This study, in contrast, investigates the crystallization conditions of strongly peraluminous, metasediment-sourced charnockites from the Qinzhou Bay Granitic Complex, South China. To constrain the temperature-melt H2O crystallization paths for the studied peraluminous charnockites, petrographic characterization was combined with fluid inclusion compositional data, mineral thermometry, and thermodynamic modelling. The uncertainties of the thermodynamic modelling in reconstructing the crystallization conditions of the granitic magmas have been evaluated by comparison between modelled and experimental phase relations for a moderately evolved, peraluminous granite (~70 wt.% SiO2). The comparison suggests that the modelling reproduces the experimentally derived phase saturation boundaries with uncertainties of 20–60?°C and 0.5–1 wt.% H2O for systems with ≤1–2 wt.% initial melt H2O at ~0.2 GPa. For the investigated natural systems, the thermometric estimates and modelling indicate that orthopyroxene crystallized at relatively low temperature (750–790?±?30?°C) and moderately high to high melt H2O content (3.5–5.6?±?0.5 wt.%). The charnockites finally solidified at relatively “cold” and “wet” conditions. This suggests that thermodynamic modelling affords a possible approach to constrain charnockite crystallization as tested here for peraluminous, moderately low pressure (≤0.3 GPa), and overall H2O-poor systems (≤1–2 wt.% H2O total), but yields results with increasing uncertainty for high-pressure or H2O-rich granitic systems.  相似文献   
107.
Glassy nuclear fallout debris from near-surface nuclear tests is fundamentally reprocessed earth material. A geochemical approach to analysis of glassy fallout is uniquely suited to determine the means of reprocessing and shed light on the mechanisms of fallout formation. An improved understanding of fallout formation is of interest both for its potential to guide post-detonation nuclear forensic investigations and in the context of possible affinities between glassy debris and other glasses generated by high-energy natural events, such as meteorite impacts and lightning strikes. This study presents a large major-element compositional dataset for glasses within aerodynamic fallout from the Trinity nuclear test (“trinitite”) and a geochemically based analysis of the glass compositional trends. Silica-rich and alkali-rich trinitite glasses show compositions and textures consistent with formation through melting of individual mineral grains—quartz and alkali feldspar, respectively—from the test-site sediment. The volumetrically dominant glass phase—called the CaMgFe glass—shows extreme major-element compositional variability. Compositional trends in the CaMgFe glass are most consistent with formation through volatility-controlled condensation from compositionally heterogeneous plasma. Radioactivity occurs only in CaMgFe glass, indicating that co-condensation of evaporated bulk ground material and trace device material was the main mechanism of radioisotope incorporation into trinitite. CaMgFe trinitite glasses overlap compositionally with basalts, rhyolites, fulgurites, tektites, and microtektites but display greater compositional diversity than all of these naturally formed glasses. Indeed, the most refractory CaMgFe glasses compositionally resemble early solar system condensates—specifically, CAIs.  相似文献   
108.
109.
Diffusion of Al in synthetic forsterite was studied at atmospheric pressure from 1100 to 1500 °C in air along [100] with activities of SiO2, MgO and Al2O3 (aSiO2, aMgO and aAl2O3) buffered. At low aSiO2, the buffer was forsterite + spinel + periclase (fo + sp + per) at all temperatures, while at high aSiO2 and subsolidus conditions a variety of three-phase assemblages containing forsterite and two other phases from spinel, cordierite, protoenstatite or sapphirine were used at 1100–1350 °C. Experiments at high aSiO2 and 1400 °C used forsterite + protoenstatite + melt (fo + en + melt), and at 1500 °C, fo + melt. The resulting diffusion profiles were analysed by LA–ICP–MS in scanning mode. Diffusion profiles in the high aSiO2 experiments were generally several hundred microns in length, but diffusion at low aSiO2 was three orders of magnitude slower than in high aSiO2 experiments carried out at the same temperature, producing short profiles only a few microns in length and close to the spatial resolution of the analytical method. Interface concentrations of Al in the forsterite, obtained by extrapolating the diffusion profiles to the crystal/buffer interface, were only a fraction of those expected at equilibrium, and varied among the differing buffer assemblages according to (aAl2O3)1/2 and (aSiO2)3/4, pointing to the substitution of Al in forsterite by an octahedral-site, vacancy-coupled (OSVC) component with the stoichiometry Al 4/3 3+ vac2/3SiO4, whereas the main substitution expected from previous equilibrium studies would be the coupled substitution of 2 Al for Mg + Si, giving the stoichiometry MgAl2O4. It is proposed that this latter substitution is not seen on the length scales of the present experiments because it requires replacement of Si by Al on tetrahedral sites, and is accordingly rate-limited by the slow diffusivity of Si. Instead, diffusion of Al by the OSVC mechanism is relatively fast, and at high aSiO2, even faster than Fe–Mg interdiffusion.  相似文献   
110.
金宣宗兴定三年(公元1219年),在今宁夏回族自治区南部发生强烈地震,现有文献给出的地震次数、地震时间、震中位置差异很大.本文根据我国地震史料和近年固原发现的碑文和地方志记载,考证该强震时间在六月十八日巳时(公历格列历8月6日10时前后);震中在固原南(35.6°N,106.2°E);震级为61/2级;震中烈度为Ⅷ至Ⅸ度.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号