首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   1篇
测绘学   9篇
大气科学   4篇
地球物理   9篇
地质学   33篇
海洋学   4篇
天文学   13篇
自然地理   2篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   5篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   8篇
  2013年   14篇
  2012年   3篇
  2011年   6篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   4篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1973年   1篇
排序方式: 共有74条查询结果,搜索用时 62 毫秒
71.
The Kali-Hindon is a watershed in the most productive central Ganga plain of India. The whole area is a fertile track with sugarcane being the principal crop. Systematic sampling was carried out to assess the source of dissolved ions, impact of sugar factories and the quality of groundwater. Thirty-six samples were collected covering an area of 395 km2. The quality of groundwater is suitable for irrigational purposes but is rich in SO4 which is not best for human consumption. Graphical treatment of major ion chemistry helps identify six chemical types of groundwater. All possible species such as Na–Cl, K–Cl, Na–HCO3, Na–SO4, Ca–HCO3, Mg–HCO3, Ca–SO4 and Mg–SO4 are likely to occur in the groundwater system. The most conspicuous change in chemistry of groundwater is relative enrichment of SO4. The interpretation of data reveals that SO4 has not been acquired through water–rock interaction. The source of SO4 is anthropogenic. Sugar factories alone are responsible for this potential environmental hazard.  相似文献   
72.
Atif  Salman  Umar  Muhammad  Ullah  Fahim 《Natural Hazards》2021,108(2):2357-2383

While historically significant for ancient civilizations, the Indus basin is also known for its floods and complex anthropogenic management history. Resulting from years of modifications by the pre-British era Mughal rulers followed by the post-partition division of river waters among the two neighbors, India and Pakistan, Pakistan faces severe management and financial challenges of water management. This study investigates the intricacies arising from this complicated management doctrine for the lower Indus basin. A detailed remote sensing-based analysis of the significant floods to hit the lower Indus basin since 2000 has been provided. Flood years were identified, and Moderate Resolution Imaging Spectroradiometer (MODIS) data for the years 2003, 2005, 2006, 2010, 2011, 2012, 2015, and 2016 were used to map their spatiotemporal extents. Almost all the flood water accumulated in the north is released in one river channel of the lower Indus basin. Further, the challenges were exacerbated due to the excessive rainfall in 2011 and 2012 in southeastern Sindh. A trend analysis of rainfall data shows an increase in the southern basin in the last 21 years, particularly toward the central plains and Sindh Province. The floodwater accumulated in the lower basin for as many as?~?425 days on average, stretching to?~?800 days of stagnancy in some places. The water stagnation period has been the highest in the river floodplain, highly populated and cultivated. The analyses of the current study suggest that the riverine channel has been better managed after the 2010 floods; however, the monsoon’s shift in 2011 and 2012 led to widespread disaster in low-lying regions of Sindh Province.

  相似文献   
73.
Sediment discharge due to soil and rock erosion within the watersheds is the major cause of siltation in water reservoirs. Siltation in reservoirs reduces the capacity for power production, irrigation water supply, and other domestic purposes. Hypsometric analysis has widely been used to identifying the geomorphic development stages (stabilized, equilibrium, and un-stable) to assess the erosion proneness of watersheds. In this study, watershed of Kurram Tangi Dam and its four sub-watersheds (SWs) were considered to determine their sediment discharge capacity through hypsometric analysis. The boundaries of watershed and sub-watersheds were delineated from Digital Elevation Model (DEM). The hypsometric parameters i.e., hypsometric integral (HI) and curves were generated using Geographic Information System (GIS) techniques. The HI values of SW-1 (0.41) and SW-2 (0.36) indicated that these two SWs were relatively more prone to erosion and contributed higher sediment discharge in Dam siltation. The results were validated through sampling the main drainage channel (Kurram River) to determine the sediment concentration at 12 sites during summer, winter, and spring seasons. Comparison of HI and sediment concentration of SWs presented high correlation (R2?=?0.87). The results emphasized the effective watershed management, extensive afforestation, and construction of silt-control structures at appropriate locations in sub-watersheds. This will ultimately maintain the water and power generation capacity as well as extending the life span of the Dam.  相似文献   
74.
A modified DRASTIC model in a geographic information system (GIS) environment coupled with an information-analytic technique called ‘rough sets’ is used to understand the aquifer vulnerability characteristics of a segment of the lower Kali watershed in western Uttar Pradesh, India. Since the region is a flat plain, topography (T) is removed as a potential control. Other parameters are the same as in DRASTIC, hence the new model is termed as DRASIC. The rough set technique is employed to provide insight into the relative vulnerabilities of different administrative units (blocks) within the study area. Using rough sets, three important factors are computed: strength, certainty and coverage. Strength indicates how the vulnerability characteristics vary in the entire area, certainty gives the relative fractions of low, medium and high vulnerability regions within a particular block, and coverage computes the percentage of a particular vulnerability state in each block. The purpose of the work is to demonstrate the utility of this integrated approach in classifying different administrative blocks in the study area according to their aquifer vulnerability characteristics. This approach is particularly useful for block-level planning and decision making for sustainable management of groundwater resources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号